import gradio as gr from transformers import pipeline # Load the model pipe = pipeline("text-generation", model="defog/llama-3-sqlcoder-8b") # Define a function that will take user input and generate text def generate_response(user_input): messages = [{"role": "user", "content": user_input}] result = pipe(messages) return result[0]['generated_text'] # Create a Gradio interface iface = gr.Interface( fn=generate_response, # The function to call for generating responses inputs="text", # The type of input: a text box outputs="text", # The type of output: a text box title="Text Generation with LLaMA-3", description="Ask anything!" ) # Launch the app iface.launch()