import string import pandas as pd from bs4 import BeautifulSoup import re from torchtext.vocab import build_vocab_from_iterator, GloVe import numpy as np from sklearn.base import TransformerMixin from sklearn.metrics import ConfusionMatrixDisplay from keras.preprocessing.text import Tokenizer import nltk nltk.download('stopwords') nltk.download('punkt') from nltk.corpus import stopwords from nltk.stem import WordNetLemmatizer from nltk.tokenize import word_tokenize from nltk.corpus import wordnet import torch import torch.nn as nn import torch.optim as optim import torch.nn.functional as F from torchtext.data.utils import get_tokenizer def download_if_non_existent(res_path, res_name): try: nltk.data.find(res_path) except LookupError: print(f'resource {res_path} not found. Downloading now...') nltk.download(res_name) download_if_non_existent('corpora/stopwords', 'stopwords') download_if_non_existent('taggers/averaged_perceptron_tagger', 'averaged_perceptron_tagger') download_if_non_existent('corpora/wordnet', 'wordnet') def fit_model(pipeline, x_train, y_train, x_test, y_test): pipeline.fit(x_train, y_train) return ConfusionMatrixDisplay.from_estimator(pipeline, x_test, y_test, normalize="true") class LinguisticPreprocessor(TransformerMixin): def __init__(self, ): super().__init__() self.lemmatizer = WordNetLemmatizer() self.tokenizer = Tokenizer() self.stop_words = set(stopwords.words('english')) self.stop = stopwords.words('english') def fit(self, X, y=None): return self def transform(self, X, y=None): X = self._remove_html_tags(X) X = self._remove_all_punctuations(X) X = self._remove_double_spaces(X) X = self._lemmatize(X) X = self._remove_stopwords(X) return X def _remove_html_tags(self, X): X = list(map( lambda x: BeautifulSoup(x, 'html.parser').get_text(), X)) return X def _remove_all_punctuations(self, X): X = list( map( lambda text: re.sub('[%s]' % re.escape(string.punctuation), '', text), X ) ) return X def _remove_double_spaces(self, X): X = list(map(lambda text: re.sub(" +", " ", text), X)) return X def _remove_stopwords(self, X): X = list(map( lambda text: " ".join( [ word for word in text.split() if word not in (self.stop_words) ] ), X ) ) return X def _lemmatize(self, X): X = list(map(lambda text: self._lemmatize_one_sentence(text), X)) return X def _lemmatize_one_sentence(self, sentence): sentence = nltk.word_tokenize(sentence) sentence = list(map(lambda word: self.lemmatizer.lemmatize(word), sentence)) return " ".join(sentence) def training_data(dataset_1, dataset_2, dataset_3): X_test = dataset_1['test']['text'] y_test = dataset_1['test']['label'] test_df = pd.DataFrame({ 'text':X_test, 'label': y_test }) combined_train_df = pd.DataFrame({ 'text': dataset_1['train']['text'] + dataset_2['train']['text'] + dataset_3['train']['text'], 'label': dataset_1['train']['label'] + dataset_2['train']['label'] + dataset_3['train']['label'] }) combined_train_df.drop_duplicates(subset=['text'], inplace=True) merged_df = pd.merge(combined_train_df, test_df, on="text", how='left', indicator=True) result_df = merged_df[merged_df['_merge'] == 'left_only'].drop(columns=['_merge']) X_train = result_df['text'].tolist() y_train = result_df['label_x'].tolist() X_test = np.array(X_test) X_train = np.array(X_train) return X_train, y_train, X_test, y_test class CNN(nn.Module): def __init__(self, vocab_size, embed_size, n_filters, filter_sizes, dropout, num_classes): super(CNN, self).__init__() self.embedding = nn.Embedding(vocab_size, embed_size) self.convs = nn.ModuleList([nn.Conv2d(in_channels=1, out_channels=n_filters, kernel_size=(fs, embed_size)) for fs in filter_sizes]) self.dropout = nn.Dropout(dropout) self.fc1 = nn.Linear(len(filter_sizes) * n_filters, num_classes) def forward(self, text): embedded = self.embedding(text) embedded = embedded.unsqueeze(1) conved = [F.leaky_relu(conv(embedded)).squeeze(3) for conv in self.convs] pooled = [F.max_pool1d(conv, conv.shape[2]).squeeze(2) for conv in conved] cat = self.dropout(torch.cat(pooled, dim=1)) return self.fc1(cat) def build_vocab(data_iter): tokenizer = get_tokenizer("basic_english") def yield_tokens(): for example in data_iter: cleaned_text = clean_text(example['text']) yield tokenizer(cleaned_text) vocab = build_vocab_from_iterator(yield_tokens(), specials=["", ""]) vocab.set_default_index(vocab[""]) return vocab, tokenizer