Spaces:
Paused
Paused
Update api/ltx_server_refactored.py
Browse files- api/ltx_server_refactored.py +313 -344
api/ltx_server_refactored.py
CHANGED
|
@@ -1,425 +1,394 @@
|
|
| 1 |
-
#
|
| 2 |
-
# DESCRIÇÃO:
|
| 3 |
-
# - Versão completa e fiel ao código original, restaurando toda a lógica de múltiplos passes,
|
| 4 |
-
# chunking, e concatenação que foi previamente omitida.
|
| 5 |
-
# - Inclui a função 'generate_low' para o primeiro passe de geração.
|
| 6 |
-
# - Mantém a divisão de latentes (`_dividir_latentes_por_tamanho`) e a montagem de vídeo
|
| 7 |
-
# com transições (`_gerar_lista_com_transicoes`).
|
| 8 |
-
# - Corrigido para ser funcional e completo, sem omissões deliberadas.
|
| 9 |
|
| 10 |
-
# --- 0. WARNINGS
|
| 11 |
import warnings
|
| 12 |
warnings.filterwarnings("ignore", category=UserWarning)
|
| 13 |
warnings.filterwarnings("ignore", category=FutureWarning)
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
|
|
|
|
|
|
| 21 |
import torch
|
| 22 |
-
import
|
| 23 |
import numpy as np
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
import imageio
|
| 25 |
from PIL import Image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
from einops import rearrange
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
LTXV_FRAME_LOG_EVERY = int(os.getenv("LTXV_FRAME_LOG_EVERY", "8"))
|
| 31 |
DEPS_DIR = Path("/data")
|
| 32 |
LTX_VIDEO_REPO_DIR = DEPS_DIR / "LTX-Video"
|
| 33 |
|
| 34 |
-
#
|
|
|
|
| 35 |
def run_setup():
|
| 36 |
setup_script_path = "setup.py"
|
| 37 |
if not os.path.exists(setup_script_path):
|
| 38 |
-
print("[DEBUG] 'setup.py' não encontrado. Pulando dependências.")
|
| 39 |
return
|
| 40 |
try:
|
| 41 |
-
print("[DEBUG] Executando setup.py para
|
| 42 |
-
subprocess.run([sys.executable, setup_script_path], check=True
|
| 43 |
-
print("[DEBUG] Setup concluído.")
|
| 44 |
except subprocess.CalledProcessError as e:
|
| 45 |
-
print(f"[
|
| 46 |
sys.exit(1)
|
| 47 |
-
|
|
|
|
|
|
|
| 48 |
def add_deps_to_path():
|
| 49 |
repo_path = str(LTX_VIDEO_REPO_DIR.resolve())
|
| 50 |
-
if
|
| 51 |
sys.path.insert(0, repo_path)
|
| 52 |
-
print(f"[DEBUG]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
|
| 54 |
-
if not LTX_VIDEO_REPO_DIR.exists():
|
| 55 |
-
run_setup()
|
| 56 |
add_deps_to_path()
|
| 57 |
-
|
| 58 |
-
from managers.vae_manager import vae_manager_singleton
|
| 59 |
-
from tools.video_encode_tool import video_encode_tool_singleton
|
| 60 |
-
from ltx_video.pipelines.pipeline_ltx_video import ConditioningItem, LTXMultiScalePipeline, adain_filter_latent
|
| 61 |
from ltx_video.utils.skip_layer_strategy import SkipLayerStrategy
|
| 62 |
from ltx_video.models.autoencoders.vae_encode import un_normalize_latents, normalize_latents
|
|
|
|
| 63 |
from api.ltx.inference import (
|
| 64 |
-
create_ltx_video_pipeline,
|
| 65 |
-
|
| 66 |
-
|
|
|
|
| 67 |
)
|
| 68 |
|
| 69 |
-
# --- 2. FUNÇÕES UTILITÁRIAS ---
|
| 70 |
-
def calculate_new_dimensions(orig_w, orig_h, target_area=512*768, divisor=8):
|
| 71 |
-
if orig_w <= 0 or orig_h <= 0: return 512, 768
|
| 72 |
-
aspect_ratio = orig_w / orig_h
|
| 73 |
-
new_h = int((target_area / aspect_ratio)**0.5)
|
| 74 |
-
new_w = int(new_h * aspect_ratio)
|
| 75 |
-
final_w = max(divisor, round(new_w / divisor) * divisor)
|
| 76 |
-
final_h = max(divisor, round(new_h / divisor) * divisor)
|
| 77 |
-
return final_h, final_w
|
| 78 |
-
|
| 79 |
-
def log_tensor_info(tensor, name="Tensor"):
|
| 80 |
-
if not LTXV_DEBUG: return
|
| 81 |
-
if not isinstance(tensor, torch.Tensor): print(f"\n[INFO] '{name}' não é um tensor."); return
|
| 82 |
-
print(f"\n--- Tensor: {name} ---\n - Shape: {tuple(tensor.shape)}\n - Dtype: {tensor.dtype}\n - Device: {tensor.device}")
|
| 83 |
-
if tensor.numel() > 0:
|
| 84 |
-
try: print(f" - Stats: Min={tensor.min().item():.4f}, Max={tensor.max().item():.4f}, Mean={tensor.mean().item():.4f}")
|
| 85 |
-
except: pass
|
| 86 |
-
print("------------------------------------------\n")
|
| 87 |
-
|
| 88 |
-
# --- 3. CLASSE PRINCIPAL DO SERVIÇO DE VÍDEO ---
|
| 89 |
class VideoService:
|
| 90 |
def __init__(self):
|
| 91 |
t0 = time.perf_counter()
|
| 92 |
-
print("[
|
| 93 |
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 94 |
self.config = self._load_config()
|
| 95 |
-
print(f"[INFO] Config: {self.config.get('precision')}, Sampler: {self.config.get('sampler')}, Device: {self.device}")
|
| 96 |
-
self._tmp_dirs, self._tmp_files = set(), set()
|
| 97 |
self.pipeline, self.latent_upsampler = self._load_models()
|
| 98 |
self.pipeline.to(self.device)
|
| 99 |
-
if self.latent_upsampler:
|
|
|
|
| 100 |
self._apply_precision_policy()
|
| 101 |
-
vae_manager_singleton.attach_pipeline(
|
| 102 |
-
|
| 103 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 104 |
|
| 105 |
def _load_config(self):
|
| 106 |
-
# ... (Implementação completa, sem omissões)
|
| 107 |
base = LTX_VIDEO_REPO_DIR / "configs"
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 118 |
def _load_models(self):
|
| 119 |
-
# ... (Implementação completa, sem omissões)
|
| 120 |
t0 = time.perf_counter()
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 124 |
pipeline = create_ltx_video_pipeline(
|
| 125 |
-
ckpt_path=
|
| 126 |
precision=self.config["precision"],
|
| 127 |
text_encoder_model_name_or_path=self.config["text_encoder_model_name_or_path"],
|
| 128 |
sampler=self.config["sampler"],
|
| 129 |
-
device="cpu"
|
|
|
|
|
|
|
|
|
|
| 130 |
)
|
| 131 |
-
|
|
|
|
| 132 |
latent_upsampler = None
|
| 133 |
if self.config.get("spatial_upscaler_model_path"):
|
| 134 |
-
|
| 135 |
-
latent_upsampler = create_latent_upsampler(
|
| 136 |
-
|
| 137 |
-
print(f"[DEBUG]
|
| 138 |
return pipeline, latent_upsampler
|
| 139 |
|
| 140 |
def _apply_precision_policy(self):
|
| 141 |
prec = str(self.config.get("precision", "")).lower()
|
| 142 |
self.runtime_autocast_dtype = torch.float32
|
| 143 |
-
if
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
def finalize(self, keep_paths=None, clear_gpu=True):
|
| 148 |
-
# ... (Implementação robusta de limpeza)
|
| 149 |
-
print("[INFO] Finalize: iniciando limpeza de recursos...")
|
| 150 |
-
keep = set(keep_paths or [])
|
| 151 |
-
for f in list(self._tmp_files):
|
| 152 |
-
try:
|
| 153 |
-
if f not in keep and os.path.isfile(f): os.remove(f)
|
| 154 |
-
except Exception as e: print(f"[WARN] Falha ao remover tmp file {f}: {e}")
|
| 155 |
-
finally: self._tmp_files.discard(f)
|
| 156 |
-
for d in list(self._tmp_dirs):
|
| 157 |
-
try:
|
| 158 |
-
if d not in keep and os.path.isdir(d): shutil.rmtree(d, ignore_errors=True)
|
| 159 |
-
except Exception as e: print(f"[WARN] Falha ao remover tmp dir {d}: {e}")
|
| 160 |
-
finally: self._tmp_dirs.discard(d)
|
| 161 |
-
gc.collect()
|
| 162 |
-
if clear_gpu and self.device == "cuda":
|
| 163 |
-
try:
|
| 164 |
-
torch.cuda.empty_cache(); torch.cuda.ipc_collect()
|
| 165 |
-
except Exception as e: print(f"[ERROR] Falha na limpeza da GPU: {e}")
|
| 166 |
-
|
| 167 |
-
# --- LÓGICA DE GERAÇÃO E CHUNKING RESTAURADA ---
|
| 168 |
|
| 169 |
-
def
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
return [latents_brutos]
|
| 173 |
-
|
| 174 |
-
chunks = []
|
| 175 |
-
start = 0
|
| 176 |
-
while start < total_latentes:
|
| 177 |
-
end = min(start + num_latente_por_chunk, total_latentes)
|
| 178 |
-
# Adiciona overlap, exceto no último chunk
|
| 179 |
-
end_with_overlap = min(end + overlap, total_latentes) if end < total_latentes else end
|
| 180 |
-
chunk = latents_brutos[:, :, start:end_with_overlap, :, :].clone().detach()
|
| 181 |
-
chunks.append(chunk)
|
| 182 |
-
if LTXV_DEBUG: print(f"[DEBUG] Chunk criado: frames {start} a {end_with_overlap}")
|
| 183 |
-
start = end
|
| 184 |
-
return chunks
|
| 185 |
-
|
| 186 |
-
def _get_total_frames(self, video_path: str) -> int:
|
| 187 |
-
cmd = ["ffprobe", "-v", "error", "-select_streams", "v:0", "-count_frames", "-show_entries", "stream=nb_read_frames", "-of", "default=nokey=1:noprint_wrappers=1", str(video_path)]
|
| 188 |
-
try:
|
| 189 |
-
result = subprocess.run(cmd, capture_output=True, text=True, check=True)
|
| 190 |
-
return int(result.stdout.strip())
|
| 191 |
-
except (subprocess.CalledProcessError, ValueError) as e:
|
| 192 |
-
print(f"[ERROR] FFprobe falhou para {video_path}: {e}")
|
| 193 |
-
return 0
|
| 194 |
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
cmd_primeiro = f'ffmpeg -y -hide_banner -loglevel error -i "{primeiro_video}" -vf "trim=end_frame={total_frames_primeiro - crossfade_frames},setpts=PTS-STARTPTS" -an "{path_primeiro_cortado}"'
|
| 207 |
-
subprocess.run(cmd_primeiro, shell=True, check=True)
|
| 208 |
-
arquivos_para_concatenar.append(path_primeiro_cortado)
|
| 209 |
-
|
| 210 |
-
# 2. Itera pelos vídeos intermediários, criando blends
|
| 211 |
-
for i in range(len(video_paths) - 1):
|
| 212 |
-
video_A_path = video_paths[i]
|
| 213 |
-
video_B_path = video_paths[i+1]
|
| 214 |
-
|
| 215 |
-
total_frames_A = self._get_total_frames(video_A_path)
|
| 216 |
-
|
| 217 |
-
# Extrai cauda de A e cabeça de B
|
| 218 |
-
cauda_A = os.path.join(pasta, f"{i}_tail_A.mp4")
|
| 219 |
-
cabeca_B = os.path.join(pasta, f"{i+1}_head_B.mp4")
|
| 220 |
-
cmd_cauda_A = f'ffmpeg -y -hide_banner -loglevel error -i "{video_A_path}" -vf "trim=start_frame={total_frames_A - crossfade_frames},setpts=PTS-STARTPTS" -an "{cauda_A}"'
|
| 221 |
-
cmd_cabeca_B = f'ffmpeg -y -hide_banner -loglevel error -i "{video_B_path}" -vf "trim=end_frame={crossfade_frames},setpts=PTS-STARTPTS" -an "{cabeca_B}"'
|
| 222 |
-
subprocess.run(cmd_cauda_A, shell=True, check=True)
|
| 223 |
-
subprocess.run(cmd_cabeca_B, shell=True, check=True)
|
| 224 |
-
|
| 225 |
-
# Cria o blend
|
| 226 |
-
blend_path = os.path.join(pasta, f"blend_{i}_{i+1}.mp4")
|
| 227 |
-
cmd_blend = f'ffmpeg -y -hide_banner -loglevel error -i "{cauda_A}" -i "{cabeca_B}" -filter_complex "[0:v][1:v]blend=all_expr=\'A*(1-T/{crossfade_frames})+B*(T/{crossfade_frames})\',format=yuv420p" -an "{blend_path}"'
|
| 228 |
-
subprocess.run(cmd_blend, shell=True, check=True)
|
| 229 |
-
arquivos_para_concatenar.append(blend_path)
|
| 230 |
-
temp_blend_files.extend([cauda_A, cabeca_B])
|
| 231 |
-
|
| 232 |
-
# Pega o meio do vídeo B (se não for o último)
|
| 233 |
-
if i + 1 < len(video_paths) - 1:
|
| 234 |
-
meio_B = os.path.join(pasta, f"{i+1}_body.mp4")
|
| 235 |
-
total_frames_B = self._get_total_frames(video_B_path)
|
| 236 |
-
cmd_meio_B = f'ffmpeg -y -hide_banner -loglevel error -i "{video_B_path}" -vf "trim=start_frame={crossfade_frames}:end_frame={total_frames_B - crossfade_frames},setpts=PTS-STARTPTS" -an "{meio_B}"'
|
| 237 |
-
subprocess.run(cmd_meio_B, shell=True, check=True)
|
| 238 |
-
arquivos_para_concatenar.append(meio_B)
|
| 239 |
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
subprocess.run(cmd_ultimo, shell=True, check=True)
|
| 245 |
-
arquivos_para_concatenar.append(path_ultimo_cortado)
|
| 246 |
-
|
| 247 |
-
# Limpa arquivos intermediários de blend
|
| 248 |
-
for f in temp_blend_files: os.remove(f)
|
| 249 |
|
| 250 |
-
return arquivos_para_concatenar
|
| 251 |
-
|
| 252 |
def _concat_mp4s_no_reencode(self, mp4_list: List[str], out_path: str):
|
| 253 |
-
if not mp4_list: raise ValueError("Lista de MP4s para concatenar está vazia.")
|
| 254 |
if len(mp4_list) == 1:
|
| 255 |
shutil.move(mp4_list[0], out_path)
|
| 256 |
return
|
| 257 |
-
|
| 258 |
-
with tempfile.NamedTemporaryFile("w", delete=False, suffix=".txt", dir=os.path.dirname(out_path)) as f:
|
| 259 |
for mp4 in mp4_list:
|
| 260 |
f.write(f"file '{os.path.abspath(mp4)}'\n")
|
| 261 |
list_path = f.name
|
| 262 |
-
|
| 263 |
cmd = f"ffmpeg -y -f concat -safe 0 -i {list_path} -c copy {out_path}"
|
| 264 |
try:
|
| 265 |
-
subprocess.
|
| 266 |
-
except subprocess.CalledProcessError as e:
|
| 267 |
-
print(f"[ERROR] Concatenação falhou: {e.stderr}")
|
| 268 |
-
raise
|
| 269 |
finally:
|
| 270 |
os.remove(list_path)
|
| 271 |
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
"width": width,
|
| 282 |
-
"height": height,
|
| 283 |
-
"guidance_scale": float(guidance_scale),
|
| 284 |
-
**first_pass_config
|
| 285 |
-
})
|
| 286 |
-
|
| 287 |
-
print(f"[DEBUG] First Pass: Gerando em {width}x{height}...")
|
| 288 |
-
latents = self.pipeline(**first_pass_kwargs).images
|
| 289 |
-
log_tensor_info(latents, "Latentes Base (First Pass)")
|
| 290 |
-
|
| 291 |
-
partes_mp4 = [latents]
|
| 292 |
-
|
| 293 |
-
if len(partes_mp4) > 1:
|
| 294 |
-
print("[INFO] Múltiplos chunks gerados. Concatenando com transições...")
|
| 295 |
-
final_output_path = os.path.join(results_dir, f"final_{used_seed}.mp4")
|
| 296 |
-
partes_para_concatenar = self._gerar_lista_com_transicoes(temp_dir, partes_mp4, crossfade_frames=8)
|
| 297 |
-
self._concat_mp4s_no_reencode(partes_para_concatenar, final_output_path)
|
| 298 |
-
elif partes_mp4:
|
| 299 |
-
print("[INFO] Apenas um chunk gerado. Movendo para o destino final.")
|
| 300 |
-
final_output_path = os.path.join(results_dir, f"final_{used_seed}.mp4")
|
| 301 |
-
shutil.move(partes_mp4[0], final_output_path)
|
| 302 |
-
else:
|
| 303 |
-
raise RuntimeError("Nenhum vídeo foi gerado.")
|
| 304 |
-
|
| 305 |
-
return final_output_path
|
| 306 |
|
| 307 |
# ==============================================================================
|
| 308 |
-
# ---
|
| 309 |
# ==============================================================================
|
| 310 |
-
def generate(self, prompt: str, **kwargs):
|
| 311 |
-
final_output_path, used_seed = None, None
|
| 312 |
-
try:
|
| 313 |
-
t_all = time.perf_counter()
|
| 314 |
-
print(f"\n{'='*20} INICIANDO NOVA GERAÇÃO {'='*20}")
|
| 315 |
-
if self.device == "cuda": torch.cuda.empty_cache()
|
| 316 |
-
|
| 317 |
-
# --- 1. Setup da Geração ---
|
| 318 |
-
negative_prompt = kwargs.get("negative_prompt", "")
|
| 319 |
-
mode = kwargs.get("mode", "text-to-video")
|
| 320 |
-
height = kwargs.get("height", 512)
|
| 321 |
-
width = kwargs.get("width", 704)
|
| 322 |
-
duration = kwargs.get("duration", 2.0)
|
| 323 |
-
guidance_scale = kwargs.get("guidance_scale", 3.0)
|
| 324 |
-
improve_texture = kwargs.get("improve_texture", True)
|
| 325 |
-
|
| 326 |
-
used_seed = random.randint(0, 2**32 - 1) if kwargs.get("randomize_seed", True) else int(kwargs.get("seed", 42))
|
| 327 |
-
seed_everething(used_seed)
|
| 328 |
-
print(f"[INFO] Geração com Seed: {used_seed}")
|
| 329 |
|
| 330 |
-
|
| 331 |
-
|
| 332 |
-
|
| 333 |
-
|
| 334 |
-
|
| 335 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 336 |
|
| 337 |
-
|
| 338 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 339 |
|
| 340 |
-
|
| 341 |
-
|
| 342 |
-
|
| 343 |
-
|
| 344 |
-
|
| 345 |
-
|
| 346 |
-
|
| 347 |
-
|
| 348 |
-
|
| 349 |
-
|
| 350 |
-
|
| 351 |
-
|
| 352 |
-
|
| 353 |
-
|
| 354 |
-
|
| 355 |
-
low_res_area = (width * height) * (downscale_factor**2)
|
| 356 |
-
downscaled_h, downscaled_w = calculate_new_dimensions(width, height, target_area=low_res_area)
|
| 357 |
-
|
| 358 |
-
base_latents = self.generate_low(call_kwargs, guidance_scale, downscaled_w, downscaled_h)
|
| 359 |
-
|
| 360 |
-
# ETAPA 2: Upsample
|
| 361 |
-
upsampled_latents = self._upsample_latents_internal(base_latents)
|
| 362 |
-
upsampled_latents = adain_filter_latent(latents=upsampled_latents, reference_latents=base_latents)
|
| 363 |
-
del base_latents; gc.collect(); torch.cuda.empty_cache()
|
| 364 |
-
|
| 365 |
-
# ETAPA 3: Refinamento (Second Pass)
|
| 366 |
-
second_pass_config = self.config.get("second_pass", {}).copy()
|
| 367 |
-
second_pass_kwargs = call_kwargs.copy()
|
| 368 |
-
second_pass_kwargs.update({
|
| 369 |
-
"latents": upsampled_latents, "guidance_scale": guidance_scale, **second_pass_config
|
| 370 |
-
})
|
| 371 |
-
final_latents = self.pipeline(**second_pass_kwargs).images
|
| 372 |
-
latents_list.append(final_latents.detach().cpu())
|
| 373 |
-
del final_latents, upsampled_latents; gc.collect(); torch.cuda.empty_cache()
|
| 374 |
else:
|
| 375 |
-
|
| 376 |
-
single_pass_latents = self.pipeline(**call_kwargs).images
|
| 377 |
-
latents_list.append(single_pass_latents.detach().cpu())
|
| 378 |
-
del single_pass_latents; gc.collect(); torch.cuda.empty_cache()
|
| 379 |
|
| 380 |
-
|
| 381 |
-
|
| 382 |
-
chunk_count = 0
|
| 383 |
-
for i, latents_cpu in enumerate(latents_list):
|
| 384 |
-
# Dividir os latentes em partes menores para decodificar
|
| 385 |
-
latents_parts = self._dividir_latentes_por_tamanho(latents_cpu, 16, 8)
|
| 386 |
-
|
| 387 |
-
for chunk in latents_parts:
|
| 388 |
-
chunk_count += 1
|
| 389 |
-
print(f"[INFO] Decodificando chunk {chunk_count}/{len(latents_parts) * len(latents_list)}...")
|
| 390 |
-
pixel_tensor = vae_manager_singleton.decode(chunk.to(self.device), decode_timestep=self.config.get("decode_timestep", 0.05))
|
| 391 |
-
|
| 392 |
-
chunk_video_path = os.path.join(temp_dir, f"part_{chunk_count}.mp4")
|
| 393 |
-
video_encode_tool_singleton.save_video_from_tensor(pixel_tensor, chunk_video_path, fps=FPS)
|
| 394 |
-
|
| 395 |
-
partes_mp4.append(chunk_video_path)
|
| 396 |
-
del pixel_tensor, chunk; gc.collect(); torch.cuda.empty_cache()
|
| 397 |
|
| 398 |
-
|
| 399 |
-
|
| 400 |
-
|
| 401 |
-
|
| 402 |
-
|
| 403 |
-
|
| 404 |
-
elif partes_mp4:
|
| 405 |
-
print("[INFO] Apenas um chunk gerado. Movendo para o destino final.")
|
| 406 |
-
final_output_path = os.path.join(results_dir, f"final_{used_seed}.mp4")
|
| 407 |
-
shutil.move(partes_mp4[0], final_output_path)
|
| 408 |
-
else:
|
| 409 |
-
raise RuntimeError("Nenhum vídeo foi gerado.")
|
| 410 |
-
|
| 411 |
-
print(f"[SUCCESS] Geração concluída em {time.perf_counter() - t_all:.2f}s. Vídeo: {final_output_path}")
|
| 412 |
-
return final_output_path, used_seed
|
| 413 |
-
|
| 414 |
-
except Exception as e:
|
| 415 |
-
print(f"[FATAL ERROR] A geração falhou: {type(e).__name__} - {e}")
|
| 416 |
-
traceback.print_exc()
|
| 417 |
-
raise
|
| 418 |
finally:
|
| 419 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 420 |
|
| 421 |
-
# ---
|
| 422 |
-
|
| 423 |
-
|
| 424 |
-
|
| 425 |
-
print("\n[INFO] VideoService pronto para receber tarefas.")
|
|
|
|
| 1 |
+
# ltx_server_refactored.py — VideoService (Modular Version with Simple Overlap Chunking)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
+
# --- 0. WARNINGS E AMBIENTE ---
|
| 4 |
import warnings
|
| 5 |
warnings.filterwarnings("ignore", category=UserWarning)
|
| 6 |
warnings.filterwarnings("ignore", category=FutureWarning)
|
| 7 |
+
warnings.filterwarnings("ignore", message=".*")
|
| 8 |
+
from huggingface_hub import logging
|
| 9 |
+
logging.set_verbosity_error()
|
| 10 |
+
logging.set_verbosity_warning()
|
| 11 |
+
logging.set_verbosity_info()
|
| 12 |
+
logging.set_verbosity_debug()
|
| 13 |
+
LTXV_DEBUG=1
|
| 14 |
+
LTXV_FRAME_LOG_EVERY=8
|
| 15 |
+
import os, subprocess, shlex, tempfile
|
| 16 |
import torch
|
| 17 |
+
import json
|
| 18 |
import numpy as np
|
| 19 |
+
import random
|
| 20 |
+
import os
|
| 21 |
+
import shlex
|
| 22 |
+
import yaml
|
| 23 |
+
from typing import List, Dict
|
| 24 |
+
from pathlib import Path
|
| 25 |
import imageio
|
| 26 |
from PIL import Image
|
| 27 |
+
import tempfile
|
| 28 |
+
from huggingface_hub import hf_hub_download
|
| 29 |
+
import sys
|
| 30 |
+
import subprocess
|
| 31 |
+
import gc
|
| 32 |
+
import shutil
|
| 33 |
+
import contextlib
|
| 34 |
+
import time
|
| 35 |
+
import traceback
|
| 36 |
from einops import rearrange
|
| 37 |
+
import torch.nn.functional as F
|
| 38 |
+
from managers.vae_manager import vae_manager_singleton
|
| 39 |
+
from tools.video_encode_tool import video_encode_tool_singleton
|
|
|
|
| 40 |
DEPS_DIR = Path("/data")
|
| 41 |
LTX_VIDEO_REPO_DIR = DEPS_DIR / "LTX-Video"
|
| 42 |
|
| 43 |
+
# (Todas as funções de setup, helpers e inicialização da classe permanecem inalteradas)
|
| 44 |
+
# ... (run_setup, add_deps_to_path, _query_gpu_processes_via_nvml, etc.)
|
| 45 |
def run_setup():
|
| 46 |
setup_script_path = "setup.py"
|
| 47 |
if not os.path.exists(setup_script_path):
|
| 48 |
+
print("[DEBUG] 'setup.py' não encontrado. Pulando clonagem de dependências.")
|
| 49 |
return
|
| 50 |
try:
|
| 51 |
+
print("[DEBUG] Executando setup.py para dependências...")
|
| 52 |
+
subprocess.run([sys.executable, setup_script_path], check=True)
|
| 53 |
+
print("[DEBUG] Setup concluído com sucesso.")
|
| 54 |
except subprocess.CalledProcessError as e:
|
| 55 |
+
print(f"[DEBUG] ERRO no setup.py (code {e.returncode}). Abortando.")
|
| 56 |
sys.exit(1)
|
| 57 |
+
if not LTX_VIDEO_REPO_DIR.exists():
|
| 58 |
+
print(f"[DEBUG] Repositório não encontrado em {LTX_VIDEO_REPO_DIR}. Rodando setup...")
|
| 59 |
+
run_setup()
|
| 60 |
def add_deps_to_path():
|
| 61 |
repo_path = str(LTX_VIDEO_REPO_DIR.resolve())
|
| 62 |
+
if str(LTX_VIDEO_REPO_DIR.resolve()) not in sys.path:
|
| 63 |
sys.path.insert(0, repo_path)
|
| 64 |
+
print(f"[DEBUG] Repo adicionado ao sys.path: {repo_path}")
|
| 65 |
+
def calculate_padding(orig_h, orig_w, target_h, target_w):
|
| 66 |
+
pad_h = target_h - orig_h
|
| 67 |
+
pad_w = target_w - orig_w
|
| 68 |
+
pad_top = pad_h // 2
|
| 69 |
+
pad_bottom = pad_h - pad_top
|
| 70 |
+
pad_left = pad_w // 2
|
| 71 |
+
pad_right = pad_w - pad_left
|
| 72 |
+
return (pad_left, pad_right, pad_top, pad_bottom)
|
| 73 |
+
def log_tensor_info(tensor, name="Tensor"):
|
| 74 |
+
if not isinstance(tensor, torch.Tensor):
|
| 75 |
+
print(f"\n[INFO] '{name}' não é tensor.")
|
| 76 |
+
return
|
| 77 |
+
print(f"\n--- Tensor: {name} ---")
|
| 78 |
+
print(f" - Shape: {tuple(tensor.shape)}")
|
| 79 |
+
print(f" - Dtype: {tensor.dtype}")
|
| 80 |
+
print(f" - Device: {tensor.device}")
|
| 81 |
+
if tensor.numel() > 0:
|
| 82 |
+
try:
|
| 83 |
+
print(f" - Min: {tensor.min().item():.4f} Max: {tensor.max().item():.4f} Mean: {tensor.mean().item():.4f}")
|
| 84 |
+
except Exception:
|
| 85 |
+
pass
|
| 86 |
+
print("------------------------------------------\n")
|
| 87 |
|
|
|
|
|
|
|
| 88 |
add_deps_to_path()
|
| 89 |
+
from ltx_video.pipelines.pipeline_ltx_video import ConditioningItem, LTXMultiScalePipeline
|
|
|
|
|
|
|
|
|
|
| 90 |
from ltx_video.utils.skip_layer_strategy import SkipLayerStrategy
|
| 91 |
from ltx_video.models.autoencoders.vae_encode import un_normalize_latents, normalize_latents
|
| 92 |
+
from ltx_video.pipelines.pipeline_ltx_video import adain_filter_latent
|
| 93 |
from api.ltx.inference import (
|
| 94 |
+
create_ltx_video_pipeline,
|
| 95 |
+
create_latent_upsampler,
|
| 96 |
+
load_image_to_tensor_with_resize_and_crop,
|
| 97 |
+
seed_everething,
|
| 98 |
)
|
| 99 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 100 |
class VideoService:
|
| 101 |
def __init__(self):
|
| 102 |
t0 = time.perf_counter()
|
| 103 |
+
print("[DEBUG] Inicializando VideoService...")
|
| 104 |
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 105 |
self.config = self._load_config()
|
|
|
|
|
|
|
| 106 |
self.pipeline, self.latent_upsampler = self._load_models()
|
| 107 |
self.pipeline.to(self.device)
|
| 108 |
+
if self.latent_upsampler:
|
| 109 |
+
self.latent_upsampler.to(self.device)
|
| 110 |
self._apply_precision_policy()
|
| 111 |
+
vae_manager_singleton.attach_pipeline(
|
| 112 |
+
self.pipeline,
|
| 113 |
+
device=self.device,
|
| 114 |
+
autocast_dtype=self.runtime_autocast_dtype
|
| 115 |
+
)
|
| 116 |
+
self._tmp_dirs = set()
|
| 117 |
+
print(f"[DEBUG] VideoService pronto. boot_time={time.perf_counter()-t0:.3f}s")
|
| 118 |
|
| 119 |
def _load_config(self):
|
|
|
|
| 120 |
base = LTX_VIDEO_REPO_DIR / "configs"
|
| 121 |
+
config_path = base / "ltxv-13b-0.9.8-distilled-fp8.yaml"
|
| 122 |
+
with open(config_path, "r") as file:
|
| 123 |
+
return yaml.safe_load(file)
|
| 124 |
+
|
| 125 |
+
def finalize(self, keep_paths=None, extra_paths=None, clear_gpu=True):
|
| 126 |
+
print("[DEBUG] Finalize: iniciando limpeza...")
|
| 127 |
+
keep = set(keep_paths or []); extras = set(extra_paths or [])
|
| 128 |
+
removed_files = 0
|
| 129 |
+
for f in list(self._tmp_files | extras):
|
| 130 |
+
try:
|
| 131 |
+
if f not in keep and os.path.isfile(f):
|
| 132 |
+
os.remove(f); removed_files += 1; print(f"[DEBUG] Removido arquivo tmp: {f}")
|
| 133 |
+
except Exception as e:
|
| 134 |
+
print(f"[DEBUG] Falha removendo arquivo {f}: {e}")
|
| 135 |
+
finally:
|
| 136 |
+
self._tmp_files.discard(f)
|
| 137 |
+
removed_dirs = 0
|
| 138 |
+
for d in list(self._tmp_dirs):
|
| 139 |
+
try:
|
| 140 |
+
if d not in keep and os.path.isdir(d):
|
| 141 |
+
shutil.rmtree(d, ignore_errors=True); removed_dirs += 1; print(f"[DEBUG] Removido diretório tmp: {d}")
|
| 142 |
+
except Exception as e:
|
| 143 |
+
print(f"[DEBUG] Falha removendo diretório {d}: {e}")
|
| 144 |
+
finally:
|
| 145 |
+
self._tmp_dirs.discard(d)
|
| 146 |
+
print(f"[DEBUG] Finalize: arquivos removidos={removed_files}, dirs removidos={removed_dirs}")
|
| 147 |
+
gc.collect()
|
| 148 |
+
try:
|
| 149 |
+
if clear_gpu and torch.cuda.is_available():
|
| 150 |
+
torch.cuda.empty_cache()
|
| 151 |
+
try:
|
| 152 |
+
torch.cuda.ipc_collect()
|
| 153 |
+
except Exception:
|
| 154 |
+
pass
|
| 155 |
+
except Exception as e:
|
| 156 |
+
print(f"[DEBUG] Finalize: limpeza GPU falhou: {e}")
|
| 157 |
+
try:
|
| 158 |
+
self._log_gpu_memory("Após finalize")
|
| 159 |
+
except Exception as e:
|
| 160 |
+
print(f"[DEBUG] Log GPU pós-finalize falhou: {e}")
|
| 161 |
+
|
| 162 |
def _load_models(self):
|
|
|
|
| 163 |
t0 = time.perf_counter()
|
| 164 |
+
LTX_REPO = "Lightricks/LTX-Video"
|
| 165 |
+
print("[DEBUG] Baixando checkpoint principal...")
|
| 166 |
+
distilled_model_path = hf_hub_download(
|
| 167 |
+
repo_id=LTX_REPO,
|
| 168 |
+
filename=self.config["checkpoint_path"],
|
| 169 |
+
local_dir=os.getenv("HF_HOME"),
|
| 170 |
+
cache_dir=os.getenv("HF_HOME_CACHE"),
|
| 171 |
+
token=os.getenv("HF_TOKEN"),
|
| 172 |
+
)
|
| 173 |
+
self.config["checkpoint_path"] = distilled_model_path
|
| 174 |
+
print(f"[DEBUG] Checkpoint em: {distilled_model_path}")
|
| 175 |
+
|
| 176 |
+
print("[DEBUG] Baixando upscaler espacial...")
|
| 177 |
+
spatial_upscaler_path = hf_hub_download(
|
| 178 |
+
repo_id=LTX_REPO,
|
| 179 |
+
filename=self.config["spatial_upscaler_model_path"],
|
| 180 |
+
local_dir=os.getenv("HF_HOME"),
|
| 181 |
+
cache_dir=os.getenv("HF_HOME_CACHE"),
|
| 182 |
+
token=os.getenv("HF_TOKEN")
|
| 183 |
+
)
|
| 184 |
+
self.config["spatial_upscaler_model_path"] = spatial_upscaler_path
|
| 185 |
+
print(f"[DEBUG] Upscaler em: {spatial_upscaler_path}")
|
| 186 |
+
|
| 187 |
+
print("[DEBUG] Construindo pipeline...")
|
| 188 |
pipeline = create_ltx_video_pipeline(
|
| 189 |
+
ckpt_path=self.config["checkpoint_path"],
|
| 190 |
precision=self.config["precision"],
|
| 191 |
text_encoder_model_name_or_path=self.config["text_encoder_model_name_or_path"],
|
| 192 |
sampler=self.config["sampler"],
|
| 193 |
+
device="cpu",
|
| 194 |
+
enhance_prompt=False,
|
| 195 |
+
prompt_enhancer_image_caption_model_name_or_path=self.config["prompt_enhancer_image_caption_model_name_or_path"],
|
| 196 |
+
prompt_enhancer_llm_model_name_or_path=self.config["prompt_enhancer_llm_model_name_or_path"],
|
| 197 |
)
|
| 198 |
+
print("[DEBUG] Pipeline pronto.")
|
| 199 |
+
|
| 200 |
latent_upsampler = None
|
| 201 |
if self.config.get("spatial_upscaler_model_path"):
|
| 202 |
+
print("[DEBUG] Construindo latent_upsampler...")
|
| 203 |
+
latent_upsampler = create_latent_upsampler(self.config["spatial_upscaler_model_path"], device="cpu")
|
| 204 |
+
print("[DEBUG] Upsampler pronto.")
|
| 205 |
+
print(f"[DEBUG] _load_models() tempo total={time.perf_counter()-t0:.3f}s")
|
| 206 |
return pipeline, latent_upsampler
|
| 207 |
|
| 208 |
def _apply_precision_policy(self):
|
| 209 |
prec = str(self.config.get("precision", "")).lower()
|
| 210 |
self.runtime_autocast_dtype = torch.float32
|
| 211 |
+
if prec in ["float8_e4m3fn", "bfloat16"]:
|
| 212 |
+
self.runtime_autocast_dtype = torch.bfloat16
|
| 213 |
+
elif prec == "mixed_precision":
|
| 214 |
+
self.runtime_autocast_dtype = torch.float16
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 215 |
|
| 216 |
+
def _register_tmp_dir(self, d: str):
|
| 217 |
+
if d and os.path.isdir(d):
|
| 218 |
+
self._tmp_dirs.add(d); print(f"[DEBUG] Registrado tmp dir: {d}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 219 |
|
| 220 |
+
@torch.no_grad()
|
| 221 |
+
def _upsample_latents_internal(self, latents: torch.Tensor) -> torch.Tensor:
|
| 222 |
+
if not self.latent_upsampler:
|
| 223 |
+
raise ValueError("Latent Upsampler não está carregado.")
|
| 224 |
+
latents_unnormalized = un_normalize_latents(latents, self.pipeline.vae, vae_per_channel_normalize=True)
|
| 225 |
+
upsampled_latents = self.latent_upsampler(latents_unnormalized)
|
| 226 |
+
return normalize_latents(upsampled_latents, self.pipeline.vae, vae_per_channel_normalize=True)
|
| 227 |
+
finally:
|
| 228 |
+
torch.cuda.empty_cache()
|
| 229 |
+
torch.cuda.ipc_collect()
|
| 230 |
+
self.finalize(keep_paths=[])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 231 |
|
| 232 |
+
def _prepare_conditioning_tensor(self, filepath, height, width, padding_values):
|
| 233 |
+
tensor = load_image_to_tensor_with_resize_and_crop(filepath, height, width)
|
| 234 |
+
tensor = torch.nn.functional.pad(tensor, padding_values)
|
| 235 |
+
return tensor.to(self.device, dtype=self.runtime_autocast_dtype)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 236 |
|
|
|
|
|
|
|
| 237 |
def _concat_mp4s_no_reencode(self, mp4_list: List[str], out_path: str):
|
|
|
|
| 238 |
if len(mp4_list) == 1:
|
| 239 |
shutil.move(mp4_list[0], out_path)
|
| 240 |
return
|
| 241 |
+
with tempfile.NamedTemporaryFile("w", delete=False, suffix=".txt") as f:
|
|
|
|
| 242 |
for mp4 in mp4_list:
|
| 243 |
f.write(f"file '{os.path.abspath(mp4)}'\n")
|
| 244 |
list_path = f.name
|
|
|
|
| 245 |
cmd = f"ffmpeg -y -f concat -safe 0 -i {list_path} -c copy {out_path}"
|
| 246 |
try:
|
| 247 |
+
subprocess.check_call(shlex.split(cmd))
|
|
|
|
|
|
|
|
|
|
| 248 |
finally:
|
| 249 |
os.remove(list_path)
|
| 250 |
|
| 251 |
+
def _save_and_log_video(self, pixel_tensor, base_filename, fps, temp_dir, results_dir, used_seed, progress_callback=None):
|
| 252 |
+
output_path = os.path.join(temp_dir, f"{base_filename}_{used_seed}.mp4")
|
| 253 |
+
video_encode_tool_singleton.save_video_from_tensor(
|
| 254 |
+
pixel_tensor, output_path, fps=fps, progress_callback=progress_callback
|
| 255 |
+
)
|
| 256 |
+
final_path = os.path.join(results_dir, f"{base_filename}_{used_seed}.mp4")
|
| 257 |
+
shutil.move(output_path, final_path)
|
| 258 |
+
print(f"[DEBUG] Vídeo salvo em: {final_path}")
|
| 259 |
+
return final_path
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 260 |
|
| 261 |
# ==============================================================================
|
| 262 |
+
# --- FUNÇÕES MODULARES COM A LÓGICA DE CHUNKING SIMPLIFICADA ---
|
| 263 |
# ==============================================================================
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 264 |
|
| 265 |
+
def prepare_condition_items(self, items_list: List, height: int, width: int, num_frames: int):
|
| 266 |
+
if not items_list: return []
|
| 267 |
+
height_padded = ((height - 1) // 8 + 1) * 8
|
| 268 |
+
width_padded = ((width - 1) // 8 + 1) * 8
|
| 269 |
+
padding_values = calculate_padding(height, width, height_padded, width_padded)
|
| 270 |
+
conditioning_items = []
|
| 271 |
+
for media, frame, weight in items_list:
|
| 272 |
+
tensor = self._prepare_conditioning_tensor(media, height, width, padding_values) if isinstance(media, str) else media.to(self.device, dtype=self.runtime_autocast_dtype)
|
| 273 |
+
safe_frame = max(0, min(int(frame), num_frames - 1))
|
| 274 |
+
conditioning_items.append(ConditioningItem(tensor, safe_frame, float(weight)))
|
| 275 |
+
return conditioning_items
|
| 276 |
+
|
| 277 |
+
def generate_low(self, prompt, negative_prompt, height, width, duration, guidance_scale, seed, conditioning_items=None):
|
| 278 |
+
used_seed = random.randint(0, 2**32 - 1) if seed is None else int(seed)
|
| 279 |
+
seed_everething(used_seed)
|
| 280 |
+
FPS = 24.0
|
| 281 |
+
actual_num_frames = max(9, int(round((round(duration * FPS) - 1) / 8.0) * 8 + 1))
|
| 282 |
+
height_padded = ((height - 1) // 8 + 1) * 8
|
| 283 |
+
width_padded = ((width - 1) // 8 + 1) * 8
|
| 284 |
+
temp_dir = tempfile.mkdtemp(prefix="ltxv_low_"); self._register_tmp_dir(temp_dir)
|
| 285 |
+
results_dir = "/app/output"; os.makedirs(results_dir, exist_ok=True)
|
| 286 |
+
downscale_factor = self.config.get("downscale_factor", 0.6666666)
|
| 287 |
+
vae_scale_factor = self.pipeline.vae_scale_factor
|
| 288 |
+
x_width = int(width_padded * downscale_factor)
|
| 289 |
+
downscaled_width = x_width - (x_width % vae_scale_factor)
|
| 290 |
+
x_height = int(height_padded * downscale_factor)
|
| 291 |
+
downscaled_height = x_height - (x_height % vae_scale_factor)
|
| 292 |
+
first_pass_kwargs = {
|
| 293 |
+
"prompt": prompt, "negative_prompt": negative_prompt, "height": downscaled_height, "width": downscaled_width,
|
| 294 |
+
"num_frames": actual_num_frames, "frame_rate": int(FPS), "generator": torch.Generator(device=self.device).manual_seed(used_seed),
|
| 295 |
+
"output_type": "latent", "conditioning_items": conditioning_items, "guidance_scale": float(guidance_scale),
|
| 296 |
+
**(self.config.get("first_pass", {}))
|
| 297 |
+
}
|
| 298 |
+
with torch.autocast(device_type="cuda", dtype=self.runtime_autocast_dtype, enabled=self.device == 'cuda'):
|
| 299 |
+
latents = self.pipeline(**first_pass_kwargs).images
|
| 300 |
+
pixel_tensor = vae_manager_singleton.decode(latents.clone(), decode_timestep=float(self.config.get("decode_timestep", 0.05)))
|
| 301 |
+
video_path = self._save_and_log_video(pixel_tensor, "low_res_video", FPS, temp_dir, results_dir, used_seed)
|
| 302 |
+
latents_cpu = latents.detach().to("cpu")
|
| 303 |
+
tensor_path = os.path.join(results_dir, f"latents_low_res_{used_seed}.pt")
|
| 304 |
+
torch.save(latents_cpu, tensor_path)
|
| 305 |
+
return video_path, tensor_path, used_seed
|
| 306 |
+
finally:
|
| 307 |
+
torch.cuda.empty_cache()
|
| 308 |
+
torch.cuda.ipc_collect()
|
| 309 |
+
self.finalize(keep_paths=[])
|
| 310 |
+
|
| 311 |
+
def generate_upscale_denoise(self, latents_path, prompt, negative_prompt, guidance_scale, seed):
|
| 312 |
+
used_seed = random.randint(0, 2**32 - 1) if seed is None else int(seed)
|
| 313 |
+
seed_everething(used_seed)
|
| 314 |
+
temp_dir = tempfile.mkdtemp(prefix="ltxv_up_"); self._register_tmp_dir(temp_dir)
|
| 315 |
+
results_dir = "/app/output"; os.makedirs(results_dir, exist_ok=True)
|
| 316 |
+
latents_low = torch.load(latents_path).to(self.device)
|
| 317 |
+
with torch.autocast(device_type="cuda", dtype=self.runtime_autocast_dtype, enabled=self.device == 'cuda'):
|
| 318 |
+
upsampled_latents = self._upsample_latents_internal(latents_low)
|
| 319 |
+
upsampled_latents = adain_filter_latent(latents=upsampled_latents, reference_latents=latents_low)
|
| 320 |
+
del latents_low; torch.cuda.empty_cache()
|
| 321 |
|
| 322 |
+
# --- LÓGICA DE DIVISÃO SIMPLES COM OVERLAP ---
|
| 323 |
+
total_frames = upsampled_latents.shape[2]
|
| 324 |
+
# Garante que mid_point seja pelo menos 1 para evitar um segundo chunk vazio se houver poucos frames
|
| 325 |
+
mid_point = max(1, total_frames // 2)
|
| 326 |
+
chunk1 = upsampled_latents[:, :, :mid_point, :, :]
|
| 327 |
+
# O segundo chunk começa um frame antes para criar o overlap
|
| 328 |
+
chunk2 = upsampled_latents[:, :, mid_point - 1:, :, :]
|
| 329 |
|
| 330 |
+
final_latents_list = []
|
| 331 |
+
for i, chunk in enumerate([chunk1, chunk2]):
|
| 332 |
+
if chunk.shape[2] <= 1: continue # Pula chunks inválidos ou vazios
|
| 333 |
+
second_pass_height = chunk.shape[3] * self.pipeline.vae_scale_factor
|
| 334 |
+
second_pass_width = chunk.shape[4] * self.pipeline.vae_scale_factor
|
| 335 |
+
second_pass_kwargs = {
|
| 336 |
+
"prompt": prompt, "negative_prompt": negative_prompt, "height": second_pass_height, "width": second_pass_width,
|
| 337 |
+
"num_frames": chunk.shape[2], "latents": chunk, "guidance_scale": float(guidance_scale),
|
| 338 |
+
"output_type": "latent", "generator": torch.Generator(device=self.device).manual_seed(used_seed),
|
| 339 |
+
**(self.config.get("second_pass", {}))
|
| 340 |
+
}
|
| 341 |
+
refined_chunk = self.pipeline(**second_pass_kwargs).images
|
| 342 |
+
# Remove o overlap do primeiro chunk refinado antes de juntar
|
| 343 |
+
if i == 0:
|
| 344 |
+
final_latents_list.append(refined_chunk[:, :, :-1, :, :])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 345 |
else:
|
| 346 |
+
final_latents_list.append(refined_chunk)
|
|
|
|
|
|
|
|
|
|
| 347 |
|
| 348 |
+
final_latents = torch.cat(final_latents_list, dim=2)
|
| 349 |
+
log_tensor_info(final_latents, "Latentes Upscaled/Refinados Finais")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 350 |
|
| 351 |
+
latents_cpu = final_latents.detach().to("cpu")
|
| 352 |
+
tensor_path = os.path.join(results_dir, f"latents_refined_{used_seed}.pt")
|
| 353 |
+
torch.save(latents_cpu, tensor_path)
|
| 354 |
+
pixel_tensor = vae_manager_singleton.decode(final_latents, decode_timestep=float(self.config.get("decode_timestep", 0.05)))
|
| 355 |
+
video_path = self._save_and_log_video(pixel_tensor, "refined_video", 24.0, temp_dir, results_dir, used_seed)
|
| 356 |
+
return video_path, tensor_path
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 357 |
finally:
|
| 358 |
+
torch.cuda.empty_cache()
|
| 359 |
+
torch.cuda.ipc_collect()
|
| 360 |
+
self.finalize(keep_paths=[])
|
| 361 |
+
|
| 362 |
+
def encode_mp4(self, latents_path: str, fps: int = 24):
|
| 363 |
+
latents = torch.load(latents_path)
|
| 364 |
+
seed = random.randint(0, 99999)
|
| 365 |
+
temp_dir = tempfile.mkdtemp(prefix="ltxv_enc_"); self._register_tmp_dir(temp_dir)
|
| 366 |
+
results_dir = "/app/output"; os.makedirs(results_dir, exist_ok=True)
|
| 367 |
+
|
| 368 |
+
# --- LÓGICA DE DIVISÃO SIMPLES COM OVERLAP ---
|
| 369 |
+
total_frames = latents.shape[2]
|
| 370 |
+
mid_point = max(1, total_frames // 2)
|
| 371 |
+
chunk1_latents = latents[:, :, :mid_point, :, :]
|
| 372 |
+
chunk2_latents = latents[:, :, mid_point - 1:, :, :]
|
| 373 |
+
|
| 374 |
+
video_parts = []
|
| 375 |
+
pixel_chunks_to_concat = []
|
| 376 |
+
with torch.autocast(device_type="cuda", dtype=self.runtime_autocast_dtype, enabled=self.device == 'cuda'):
|
| 377 |
+
for i, chunk in enumerate([chunk1_latents, chunk2_latents]):
|
| 378 |
+
if chunk.shape[2] == 0: continue
|
| 379 |
+
pixel_chunk = vae_manager_singleton.decode(chunk.to(self.device), decode_timestep=float(self.config.get("decode_timestep", 0.05)))
|
| 380 |
+
# Remove o overlap do primeiro chunk de pixels
|
| 381 |
+
if i == 0:
|
| 382 |
+
pixel_chunks_to_concat.append(pixel_chunk[:, :, :-1, :, :])
|
| 383 |
+
else:
|
| 384 |
+
pixel_chunks_to_concat.append(pixel_chunk)
|
| 385 |
+
|
| 386 |
+
final_pixel_tensor = torch.cat(pixel_chunks_to_concat, dim=2)
|
| 387 |
+
final_video_path = self._save_and_log_video(final_pixel_tensor, f"final_concatenated_{seed}", fps, temp_dir, results_dir, seed)
|
| 388 |
+
return final_video_path
|
| 389 |
+
|
| 390 |
|
| 391 |
+
# --- INSTANCIAÇÃO DO SERVIÇO ---
|
| 392 |
+
print("Criando instância do VideoService. O carregamento do modelo começará agora...")
|
| 393 |
+
video_generation_service = VideoService()
|
| 394 |
+
print("Instância do VideoService pronta para uso.")
|
|
|