File size: 40,346 Bytes
fd4abdb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e38baeb
fd4abdb
 
f182179
6a5650a
 
 
06d1678
f182179
6a5650a
fd4abdb
f182179
6a5650a
fd4abdb
00e30d0
fd4abdb
e38baeb
fd4abdb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0eed3f3
 
42aa4fa
 
 
 
 
 
 
 
 
 
 
09305c5
 
0eed3f3
 
 
 
42aa4fa
7b4cf93
0eed3f3
 
 
 
 
 
 
fd4abdb
 
 
 
 
 
 
 
 
 
 
 
 
 
42aa4fa
fd4abdb
42aa4fa
 
09305c5
 
42aa4fa
 
 
 
 
 
 
 
 
 
 
32b1b3e
 
42aa4fa
09305c5
 
42aa4fa
 
 
 
 
85d172d
42aa4fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fd4abdb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
# ltx_server.py — VideoService (beta 1.1)
# Sempre output_type="latent"; no final: VAE (bloco inteiro) → pixels → MP4.
# Ignora UserWarning/FutureWarning e injeta VAE no manager com dtype/device corretos.

# --- 0. WARNINGS E AMBIENTE ---
import warnings
warnings.filterwarnings("ignore", category=UserWarning)
warnings.filterwarnings("ignore", category=FutureWarning)
warnings.filterwarnings("ignore", message=".*")

from huggingface_hub import logging

logging.set_verbosity_error()
logging.set_verbosity_warning()
logging.set_verbosity_info()
logging.set_verbosity_debug()


LTXV_DEBUG=1
LTXV_FRAME_LOG_EVERY=8



# --- 1. IMPORTAÇÕES ---
import os, subprocess, shlex, tempfile
import torch
import json
import numpy as np
import random
import os
import shlex
import yaml
from typing import List, Dict
from pathlib import Path
import imageio
import tempfile
from huggingface_hub import hf_hub_download
import sys
import subprocess
import gc
import shutil
import contextlib
import time
import traceback

# Singletons (versões simples)
from managers.vae_manager import vae_manager_singleton
from tools.video_encode_tool import video_encode_tool_singleton

# --- 2. GERENCIAMENTO DE DEPENDÊNCIAS E SETUP ---
def _query_gpu_processes_via_nvml(device_index: int) -> List[Dict]:
    try:
        import psutil
        import pynvml as nvml
        nvml.nvmlInit()
        handle = nvml.nvmlDeviceGetHandleByIndex(device_index)
        try:
            procs = nvml.nvmlDeviceGetComputeRunningProcesses_v3(handle)
        except Exception:
            procs = nvml.nvmlDeviceGetComputeRunningProcesses(handle)
        results = []
        for p in procs:
            pid = int(p.pid)
            used_mb = None
            try:
                if getattr(p, "usedGpuMemory", None) is not None and p.usedGpuMemory not in (0,):
                    used_mb = max(0, int(p.usedGpuMemory) // (1024 * 1024))
            except Exception:
                used_mb = None
            name = "unknown"
            user = "unknown"
            try:
                import psutil
                pr = psutil.Process(pid)
                name = pr.name()
                user = pr.username()
            except Exception:
                pass
            results.append({"pid": pid, "name": name, "user": user, "used_mb": used_mb})
        nvml.nvmlShutdown()
        return results
    except Exception:
        return []

def _query_gpu_processes_via_nvidiasmi(device_index: int) -> List[Dict]:
    cmd = f"nvidia-smi -i {device_index} --query-compute-apps=pid,process_name,used_memory --format=csv,noheader,nounits"
    try:
        out = subprocess.check_output(shlex.split(cmd), stderr=subprocess.STDOUT, text=True, timeout=2.0)
    except Exception:
        return []
    results = []
    for line in out.strip().splitlines():
        parts = [p.strip() for p in line.split(",")]
        if len(parts) >= 3:
            try:
                pid = int(parts[0]); name = parts[1]; used_mb = int(parts[2])
                user = "unknown"
                try:
                    import psutil
                    pr = psutil.Process(pid)
                    user = pr.username()
                except Exception:
                    pass
                results.append({"pid": pid, "name": name, "user": user, "used_mb": used_mb})
            except Exception:
                continue
    return results

def _gpu_process_table(processes: List[Dict], current_pid: int) -> str:
    if not processes:
        return "  - Processos ativos: (nenhum)\n"
    processes = sorted(processes, key=lambda x: (x.get("used_mb") or 0), reverse=True)
    lines = ["  - Processos ativos (PID | USER | NAME | VRAM MB):"]
    for p in processes:
        star = "*" if p["pid"] == current_pid else " "
        used_str = str(p["used_mb"]) if p.get("used_mb") is not None else "N/A"
        lines.append(f"    {star} {p['pid']} | {p['user']} | {p['name']} | {used_str}")
    return "\n".join(lines) + "\n"

def run_setup():
    setup_script_path = "setup.py"
    if not os.path.exists(setup_script_path):
        print("[DEBUG] 'setup.py' não encontrado. Pulando clonagem de dependências.")
        return
    try:
        print("[DEBUG] Executando setup.py para dependências...")
        subprocess.run([sys.executable, setup_script_path], check=True)
        print("[DEBUG] Setup concluído com sucesso.")
    except subprocess.CalledProcessError as e:
        print(f"[DEBUG] ERRO no setup.py (code {e.returncode}). Abortando.")
        sys.exit(1)

from api.ltx.inference import (
    create_ltx_video_pipeline,
    create_latent_upsampler,
    load_image_to_tensor_with_resize_and_crop,
    seed_everething,
    calculate_padding,
    load_media_file,
)

DEPS_DIR = Path("/data")
LTX_VIDEO_REPO_DIR = DEPS_DIR / "LTX-Video"
if not LTX_VIDEO_REPO_DIR.exists():
    print(f"[DEBUG] Repositório não encontrado em {LTX_VIDEO_REPO_DIR}. Rodando setup...")
    run_setup()

def add_deps_to_path():
    repo_path = str(LTX_VIDEO_REPO_DIR.resolve())
    if str(LTX_VIDEO_REPO_DIR.resolve()) not in sys.path:
        sys.path.insert(0, repo_path)
        print(f"[DEBUG] Repo adicionado ao sys.path: {repo_path}")

add_deps_to_path()

# --- 3. IMPORTAÇÕES ESPECÍFICAS DO MODELO ---

from ltx_video.pipelines.pipeline_ltx_video import ConditioningItem, LTXMultiScalePipeline
from ltx_video.utils.skip_layer_strategy import SkipLayerStrategy

# --- 4. FUNÇÕES HELPER DE LOG ---
def log_tensor_info(tensor, name="Tensor"):
    if not isinstance(tensor, torch.Tensor):
        print(f"\n[INFO] '{name}' não é tensor.")
        return
    print(f"\n--- Tensor: {name} ---")
    print(f"  - Shape: {tuple(tensor.shape)}")
    print(f"  - Dtype: {tensor.dtype}")
    print(f"  - Device: {tensor.device}")
    if tensor.numel() > 0:
        try:
            print(f"  - Min: {tensor.min().item():.4f}  Max: {tensor.max().item():.4f}  Mean: {tensor.mean().item():.4f}")
        except Exception:
            pass
    print("------------------------------------------\n")

# --- 5. CLASSE PRINCIPAL DO SERVIÇO ---
class VideoService:
    def __init__(self):
        t0 = time.perf_counter()
        print("[DEBUG] Inicializando VideoService...")
        self.debug = os.getenv("LTXV_DEBUG", "1") == "1"
        self.frame_log_every = int(os.getenv("LTXV_FRAME_LOG_EVERY", "8"))
        self.config = self._load_config()
        print(f"[DEBUG] Config carregada (precision={self.config.get('precision')}, sampler={self.config.get('sampler')})")
        self.device = "cuda" if torch.cuda.is_available() else "cpu"
        print(f"[DEBUG] Device selecionado: {self.device}")
        self.last_memory_reserved_mb = 0.0
        self._tmp_dirs = set(); self._tmp_files = set(); self._last_outputs = []

        self.pipeline, self.latent_upsampler = self._load_models()
        print(f"[DEBUG] Pipeline e Upsampler carregados. Upsampler ativo? {bool(self.latent_upsampler)}")

        print(f"[DEBUG] Movendo modelos para {self.device}...")
        self.pipeline.to(self.device)
        if self.latent_upsampler:
            self.latent_upsampler.to(self.device)

        self._apply_precision_policy()
        print(f"[DEBUG] runtime_autocast_dtype = {getattr(self, 'runtime_autocast_dtype', None)}")

        # Injeta pipeline/vae no manager (impede vae=None)
        vae_manager_singleton.attach_pipeline(
            self.pipeline,
            device=self.device,
            autocast_dtype=self.runtime_autocast_dtype
        )
        print(f"[DEBUG] VAE manager conectado: has_vae={hasattr(self.pipeline, 'vae')} device={self.device}")

        if self.device == "cuda":
            torch.cuda.empty_cache()
            self._log_gpu_memory("Após carregar modelos")

        print(f"[DEBUG] VideoService pronto. boot_time={time.perf_counter()-t0:.3f}s")

    def _log_gpu_memory(self, stage_name: str):
        if self.device != "cuda":
            return
        device_index = torch.cuda.current_device() if torch.cuda.is_available() else 0
        current_reserved_b = torch.cuda.memory_reserved(device_index)
        current_reserved_mb = current_reserved_b / (1024 ** 2)
        total_memory_b = torch.cuda.get_device_properties(device_index).total_memory
        total_memory_mb = total_memory_b / (1024 ** 2)
        peak_reserved_mb = torch.cuda.max_memory_reserved(device_index) / (1024 ** 2)
        delta_mb = current_reserved_mb - getattr(self, "last_memory_reserved_mb", 0.0)
        processes = _query_gpu_processes_via_nvml(device_index) or _query_gpu_processes_via_nvidiasmi(device_index)
        print(f"\n--- [LOG GPU] {stage_name} (cuda:{device_index}) ---")
        print(f"  - Reservado: {current_reserved_mb:.2f} MB / {total_memory_mb:.2f} MB  (Δ={delta_mb:+.2f} MB)")
        if peak_reserved_mb > getattr(self, "last_memory_reserved_mb", 0.0):
            print(f"  - Pico reservado (nesta fase): {peak_reserved_mb:.2f} MB")
        print(_gpu_process_table(processes, os.getpid()), end="")
        print("--------------------------------------------------\n")
        self.last_memory_reserved_mb = current_reserved_mb

    def _register_tmp_dir(self, d: str):
        if d and os.path.isdir(d):
            self._tmp_dirs.add(d); print(f"[DEBUG] Registrado tmp dir: {d}")

    def _register_tmp_file(self, f: str):
        if f and os.path.exists(f):
            self._tmp_files.add(f); print(f"[DEBUG] Registrado tmp file: {f}")

    def finalize(self, keep_paths=None, extra_paths=None, clear_gpu=True):
        print("[DEBUG] Finalize: iniciando limpeza...")
        keep = set(keep_paths or []); extras = set(extra_paths or [])
        removed_files = 0
        for f in list(self._tmp_files | extras):
            try:
                if f not in keep and os.path.isfile(f):
                    os.remove(f); removed_files += 1; print(f"[DEBUG] Removido arquivo tmp: {f}")
            except Exception as e:
                print(f"[DEBUG] Falha removendo arquivo {f}: {e}")
            finally:
                self._tmp_files.discard(f)
        removed_dirs = 0
        for d in list(self._tmp_dirs):
            try:
                if d not in keep and os.path.isdir(d):
                    shutil.rmtree(d, ignore_errors=True); removed_dirs += 1; print(f"[DEBUG] Removido diretório tmp: {d}")
            except Exception as e:
                print(f"[DEBUG] Falha removendo diretório {d}: {e}")
            finally:
                self._tmp_dirs.discard(d)
        print(f"[DEBUG] Finalize: arquivos removidos={removed_files}, dirs removidos={removed_dirs}")
        gc.collect()
        try:
            if clear_gpu and torch.cuda.is_available():
                torch.cuda.empty_cache()
                try:
                    torch.cuda.ipc_collect()
                except Exception:
                    pass
        except Exception as e:
            print(f"[DEBUG] Finalize: limpeza GPU falhou: {e}")
        try:
            self._log_gpu_memory("Após finalize")
        except Exception as e:
            print(f"[DEBUG] Log GPU pós-finalize falhou: {e}")

    def _load_config(self):
        base = LTX_VIDEO_REPO_DIR / "configs"
        candidates = [
            base / "ltxv-13b-0.9.8-dev-fp8.yaml",
            base / "ltxv-13b-0.9.8-distilled-fp8.yaml",
            base / "ltxv-13b-0.9.8-distilled.yaml",
        ]
        for cfg in candidates:
            if cfg.exists():
                print(f"[DEBUG] Config selecionada: {cfg}")
                with open(cfg, "r") as file:
                    return yaml.safe_load(file)
        cfg = base / "ltxv-13b-0.9.8-distilled-fp8.yaml"
        print(f"[DEBUG] Config fallback: {cfg}")
        with open(cfg, "r") as file:
            return yaml.safe_load(file)

    def _load_models(self):
        t0 = time.perf_counter()
        LTX_REPO = "Lightricks/LTX-Video"
        print("[DEBUG] Baixando checkpoint principal...")
        distilled_model_path = hf_hub_download(
            repo_id=LTX_REPO,
            filename=self.config["checkpoint_path"],
            local_dir=os.getenv("HF_HOME"),
            cache_dir=os.getenv("HF_HOME_CACHE"),
            token=os.getenv("HF_TOKEN"),
        )
        self.config["checkpoint_path"] = distilled_model_path
        print(f"[DEBUG] Checkpoint em: {distilled_model_path}")

        print("[DEBUG] Baixando upscaler espacial...")
        spatial_upscaler_path = hf_hub_download(
            repo_id=LTX_REPO,
            filename=self.config["spatial_upscaler_model_path"],
            local_dir=os.getenv("HF_HOME"),
            cache_dir=os.getenv("HF_HOME_CACHE"),
            token=os.getenv("HF_TOKEN")
        )
        self.config["spatial_upscaler_model_path"] = spatial_upscaler_path
        print(f"[DEBUG] Upscaler em: {spatial_upscaler_path}")

        print("[DEBUG] Construindo pipeline...")
        pipeline = create_ltx_video_pipeline(
            ckpt_path=self.config["checkpoint_path"],
            precision=self.config["precision"],
            text_encoder_model_name_or_path=self.config["text_encoder_model_name_or_path"],
            sampler=self.config["sampler"],
            device="cpu",
            enhance_prompt=False,
            prompt_enhancer_image_caption_model_name_or_path=self.config["prompt_enhancer_image_caption_model_name_or_path"],
            prompt_enhancer_llm_model_name_or_path=self.config["prompt_enhancer_llm_model_name_or_path"],
        )
        print("[DEBUG] Pipeline pronto.")

        latent_upsampler = None
        if self.config.get("spatial_upscaler_model_path"):
            print("[DEBUG] Construindo latent_upsampler...")
            latent_upsampler = create_latent_upsampler(self.config["spatial_upscaler_model_path"], device="cpu")
            print("[DEBUG] Upsampler pronto.")
        print(f"[DEBUG] _load_models() tempo total={time.perf_counter()-t0:.3f}s")
        return pipeline, latent_upsampler

    def _promote_fp8_weights_to_bf16(self, module):
        if not isinstance(module, torch.nn.Module):
            print("[DEBUG] Promoção FP8→BF16 ignorada: alvo não é nn.Module.")
            return
        f8 = getattr(torch, "float8_e4m3fn", None)
        if f8 is None:
            print("[DEBUG] torch.float8_e4m3fn indisponível.")
            return
        p_cnt = b_cnt = 0
        for _, p in module.named_parameters(recurse=True):
            try:
                if p.dtype == f8:
                    with torch.no_grad():
                        p.data = p.data.to(torch.bfloat16); p_cnt += 1
            except Exception:
                pass
        for _, b in module.named_buffers(recurse=True):
            try:
                if hasattr(b, "dtype") and b.dtype == f8:
                    b.data = b.data.to(torch.bfloat16); b_cnt += 1
            except Exception:
                pass
        print(f"[DEBUG] FP8→BF16: params_promoted={p_cnt}, buffers_promoted={b_cnt}")

    def _apply_precision_policy(self):
        prec = str(self.config.get("precision", "")).lower()
        self.runtime_autocast_dtype = torch.float32
        print(f"[DEBUG] Aplicando política de precisão: {prec}")
        if prec == "float8_e4m3fn":
            self.runtime_autocast_dtype = torch.bfloat16
            force_promote = os.getenv("LTXV_FORCE_BF16_ON_FP8", "0") == "1"
            print(f"[DEBUG] FP8 detectado. force_promote={force_promote}")
            if force_promote and hasattr(torch, "float8_e4m3fn"):
                try:
                    self._promote_fp8_weights_to_bf16(self.pipeline)
                except Exception as e:
                    print(f"[DEBUG] Promoção FP8→BF16 na pipeline falhou: {e}")
                try:
                    if self.latent_upsampler:
                        self._promote_fp8_weights_to_bf16(self.latent_upsampler)
                except Exception as e:
                    print(f"[DEBUG] Promoção FP8→BF16 no upsampler falhou: {e}")
        elif prec == "bfloat16":
            self.runtime_autocast_dtype = torch.bfloat16
        elif prec == "mixed_precision":
            self.runtime_autocast_dtype = torch.float16
        else:
            self.runtime_autocast_dtype = torch.float32

    def _prepare_conditioning_tensor(self, filepath, height, width, padding_values):
        print(f"[DEBUG] Carregando condicionamento: {filepath}")
        tensor = load_image_to_tensor_with_resize_and_crop(filepath, height, width)
        tensor = torch.nn.functional.pad(tensor, padding_values)
        out = tensor.to(self.device, dtype=self.runtime_autocast_dtype) if self.device == "cuda" else tensor.to(self.device)
        print(f"[DEBUG] Cond shape={tuple(out.shape)} dtype={out.dtype} device={out.device}")
        return out


    def _dividir_latentes_por_tamanho(self, latents_brutos, num_latente_por_chunk: int, overlap: int = 1):
        """
        Divide o tensor de latentes em chunks com tamanho definido em número de latentes.
        
        Args:
            latents_brutos: tensor [B, C, T, H, W]
            num_latente_por_chunk: número de latentes por chunk
            overlap: número de frames que se sobrepõem entre chunks
        
        Returns:
            List[tensor]: lista de chunks cloneados
        """
        sum_latent = latents_brutos.shape[2]
        chunks = []
    
        if num_latente_por_chunk >= sum_latent:
            return [latents_brutos]
    
        n_chunks = (sum_latent) // num_latente_por_chunk 
        steps = sum_latent//n_chunks
        print("================PODA CAUSAL=================")
        print(f"[DEBUG] TOTAL LATENTES = {sum_latent}")
        print(f"[DEBUG] LATENTES min por chunk = {num_latente_por_chunk}")
        print(f"[DEBUG] Número de chunks = {n_chunks}")
        if n_chunks > 1:
            i=0
            while i < n_chunks:
                start = (num_latente_por_chunk*i)
                end = (start+num_latente_por_chunk+overlap)
                if i+1 < n_chunks:
                    chunk = latents_brutos[:, :, start:end, :, :].clone().detach()
                    print(f"[DEBUG] chunk{i+1}[:, :, {start}:{end}, :, :] = {chunk.shape[2]}")
                else:
                    chunk = latents_brutos[:, :, start:, :, :].clone().detach()
                    print(f"[DEBUG] chunk{i+1}[:, :, {start}:, :, :] = {chunk.shape[2]}")
                chunks.append(chunk)
                i+=1
        else:
            print(f"[DEBUG] numero chunks minimo ")
            print(f"[DEBUG] latents_brutos[:, :, :, :, :] = {latents_brutos.shape[2]}")
            chunks.append(latents_brutos)
        print("================PODA CAUSAL=================")
        return chunks

    def _get_total_frames(self, video_path: str) -> int:
        cmd = [
            "ffprobe",
            "-v", "error",
            "-select_streams", "v:0",
            "-count_frames",
            "-show_entries", "stream=nb_read_frames",
            "-of", "default=nokey=1:noprint_wrappers=1",
            video_path
        ]
        result = subprocess.run(cmd, capture_output=True, text=True, check=True)
        return int(result.stdout.strip())    

    
    
    def _gerar_lista_com_transicoes(self, pasta: str, video_paths: list[str], crossfade_frames: int = 8) -> list[str]:
        """
        Gera uma nova lista de vídeos aplicando transições suaves (blend frame a frame)
        seguindo exatamente a lógica linear de Carlos.
        """
        import os, subprocess, shutil
    
        poda = crossfade_frames
        total_partes = len(video_paths)
        video_fade_fim = None
        video_fade_ini = None
        nova_lista = []

        print("===========CONCATECAO CAUSAL=============")
     
        print(f"[DEBUG] Iniciando pipeline com {total_partes} vídeos e {poda} frames de crossfade")
    
        for i in range(total_partes):
            base = video_paths[i]
        
            # --- PODA ---
            video_podado = os.path.join(pasta, f"{base}_podado_{i}.mp4")
            

            if i<total_partes-1:
                end_frame = self._get_total_frames(base) - poda
            else:
                end_frame = self._get_total_frames(base)
            
            if i>0:
                start_frame = poda
            else:
                start_frame = 0
                
            cmd_fim = (
               f'ffmpeg -y -hide_banner -loglevel error -i "{base}" '
               f'-vf "trim=start_frame={start_frame}:end_frame={end_frame},setpts=PTS-STARTPTS" '
               f'-an "{video_podado}"'
            )
            subprocess.run(cmd_fim, shell=True, check=True)
            
        
            # --- FADE_INI --- 
            if i > 0:
                video_fade_ini = os.path.join(pasta, f"{base}_fade_ini_{i}.mp4")
                cmd_ini = (
                    f'ffmpeg -y -hide_banner -loglevel error -i "{base}" '
                    f'-vf "trim=end_frame={poda},setpts=PTS-STARTPTS" -an "{video_fade_ini}"'
                )
                subprocess.run(cmd_ini, shell=True, check=True)
                
            # --- TRANSIÇÃO ---
            if video_fade_fim and video_fade_ini:
                video_fade  = os.path.join(pasta, f"transicao_{i}_{i+1}.mp4")
                cmd_blend = (
                    f'ffmpeg -y -hide_banner -loglevel error '
                    f'-i "{video_fade_fim}" -i "{video_fade_ini}" '
                    f'-filter_complex "[0:v][1:v]blend=all_expr=\'A*(1-T/{poda})+B*(T/{poda})\',format=yuv420p" '
                    f'-frames:v {poda} "{video_fade}"'
                )
                subprocess.run(cmd_blend, shell=True, check=True)
                print(f"[DEBUG] transicao adicionada {i}/{i+1} {self._get_total_frames(video_fade)} frames ✅")
                nova_lista.append(video_fade)
                
            # --- FADE_FIM ---
            if i<=total_partes-1:
                video_fade_fim = os.path.join(pasta, f"{base}_fade_fim_{i}.mp4")
                cmd_fim = (
                    f'ffmpeg -y -hide_banner -loglevel error -i "{base}" '
                    f'-vf "trim=start_frame={end_frame-poda},setpts=PTS-STARTPTS" -an "{video_fade_fim}"'
                )
                subprocess.run(cmd_fim, shell=True, check=True)
           
            nova_lista.append(video_podado)
            print(f"[DEBUG] Video podado {i+1} adicionado {self._get_total_frames(video_podado)} frames ✅")
               


        print("===========CONCATECAO CAUSAL=============")
        print(f"[DEBUG] {nova_lista}")
        return nova_lista
    
    def _concat_mp4s_no_reencode(self, mp4_list: List[str], out_path: str):
        """
        Concatena múltiplos MP4s sem reencode usando o demuxer do ffmpeg.
        ATENÇÃO: todos os arquivos precisam ter mesmo codec, fps, resolução etc.
        """
        if not mp4_list or len(mp4_list) < 2:
            raise ValueError("Forneça pelo menos dois arquivos MP4 para concatenar.")

        
        # Cria lista temporária para o ffmpeg
        with tempfile.NamedTemporaryFile("w", delete=False, suffix=".txt") as f:
            for mp4 in mp4_list:
                f.write(f"file '{os.path.abspath(mp4)}'\n")
            list_path = f.name
    
        cmd = f"ffmpeg -y -f concat -safe 0 -i {list_path} -c copy {out_path}"
        print(f"[DEBUG] Concat: {cmd}")
    
        try:
            subprocess.check_call(shlex.split(cmd))
        finally:
            try:
                os.remove(list_path)
            except Exception:
                pass   

    
    def generate(
        self,
        prompt,
        negative_prompt,
        mode="text-to-video",
        start_image_filepath=None,
        middle_image_filepath=None,
        middle_frame_number=None,
        middle_image_weight=1.0,
        end_image_filepath=None,
        end_image_weight=1.0,
        input_video_filepath=None,
        height=512,
        width=704,
        duration=2.0,
        frames_to_use=9,
        seed=42,
        randomize_seed=True,
        guidance_scale=3.0,
        improve_texture=True,
        progress_callback=None,
        # Sempre latent → VAE → MP4 (simples)
        external_decode=True,
    ):
        t_all = time.perf_counter()
        print(f"[DEBUG] generate() begin mode={mode} external_decode={external_decode} improve_texture={improve_texture}")
        if self.device == "cuda":
            torch.cuda.empty_cache(); torch.cuda.reset_peak_memory_stats()
        self._log_gpu_memory("Início da Geração")

        if mode == "image-to-video" and not start_image_filepath:
            raise ValueError("A imagem de início é obrigatória para o modo image-to-video")
        if mode == "video-to-video" and not input_video_filepath:
            raise ValueError("O vídeo de entrada é obrigatório para o modo video-to-video")

        used_seed = random.randint(0, 2**32 - 1) if randomize_seed else int(seed)
        seed_everething(used_seed); print(f"[DEBUG] Seed usado: {used_seed}")

        FPS = 24.0; MAX_NUM_FRAMES = 2570
        target_frames_rounded = round(duration * FPS)
        n_val = round((float(target_frames_rounded) - 1.0) / 8.0)
        actual_num_frames = max(9, min(MAX_NUM_FRAMES, int(n_val * 8 + 1)))
        print(f"[DEBUG] Frames alvo: {actual_num_frames} (dur={duration}s @ {FPS}fps)")

        height_padded = ((height - 1) // 32 + 1) * 32
        width_padded = ((width - 1) // 32 + 1) * 32
        padding_values = calculate_padding(height, width, height_padded, width_padded)
        print(f"[DEBUG] Dimensões: ({height},{width}) -> pad ({height_padded},{width_padded}); padding={padding_values}")

        generator = torch.Generator(device=self.device).manual_seed(used_seed)
        conditioning_items = []

        if mode == "image-to-video":
            start_tensor = self._prepare_conditioning_tensor(start_image_filepath, height, width, padding_values)
            conditioning_items.append(ConditioningItem(start_tensor, 0, 1.0))
            if middle_image_filepath and middle_frame_number is not None:
                middle_tensor = self._prepare_conditioning_tensor(middle_image_filepath, height, width, padding_values)
                safe_middle_frame = max(0, min(int(middle_frame_number), actual_num_frames - 1))
                conditioning_items.append(ConditioningItem(middle_tensor, safe_middle_frame, float(middle_image_weight)))
            if end_image_filepath:
                end_tensor = self._prepare_conditioning_tensor(end_image_filepath, height, width, padding_values)
                last_frame_index = actual_num_frames - 1
                conditioning_items.append(ConditioningItem(end_tensor, last_frame_index, float(end_image_weight)))
            print(f"[DEBUG] Conditioning items: {len(conditioning_items)}")

        # Sempre pedimos latentes (simples)
        call_kwargs = {
            "prompt": prompt,
            "negative_prompt": negative_prompt,
            "height": height_padded,
            "width": width_padded,
            "num_frames": actual_num_frames,
            "frame_rate": int(FPS),
            "generator": generator,
            "output_type": "latent",
            "conditioning_items": conditioning_items if conditioning_items else None,
            "media_items": None,
            "decode_timestep": self.config["decode_timestep"],
            "decode_noise_scale": self.config["decode_noise_scale"],
            "stochastic_sampling": self.config["stochastic_sampling"],
            "image_cond_noise_scale": 0.01,
            "is_video": True,
            "vae_per_channel_normalize": True,
            "mixed_precision": (self.config["precision"] == "mixed_precision"),
            "offload_to_cpu": False,
            "enhance_prompt": False,
            "skip_layer_strategy": SkipLayerStrategy.AttentionValues,
        }
        print(f"[DEBUG] output_type={call_kwargs['output_type']} skip_layer_strategy={call_kwargs['skip_layer_strategy']}")

        if mode == "video-to-video":
            media = load_media_file(
                media_path=input_video_filepath,
                height=height,
                width=width,
                max_frames=int(frames_to_use),
                padding=padding_values,
            ).to(self.device)
            call_kwargs["media_items"] = media
            print(f"[DEBUG] media_items shape={tuple(media.shape)}")

        latents = None
        multi_scale_pipeline = None

        try:
            if improve_texture:
                if not self.latent_upsampler:
                    raise ValueError("Upscaler espacial não carregado.")
                print("[DEBUG] Multi-escala: construindo pipeline...")
                multi_scale_pipeline = LTXMultiScalePipeline(self.pipeline, self.latent_upsampler)
                first_pass_args = self.config.get("first_pass", {}).copy()
                first_pass_args["guidance_scale"] = float(guidance_scale)
                second_pass_args = self.config.get("second_pass", {}).copy()
                second_pass_args["guidance_scale"] = float(guidance_scale)

                multi_scale_call_kwargs = call_kwargs.copy()
                multi_scale_call_kwargs.update(
                    {
                        "downscale_factor": self.config["downscale_factor"],
                        "first_pass": first_pass_args,
                        "second_pass": second_pass_args,
                    }
                )
                print("[DEBUG] Chamando multi_scale_pipeline...")
                t_ms = time.perf_counter()
                ctx = torch.autocast(device_type="cuda", dtype=self.runtime_autocast_dtype) if self.device == "cuda" else contextlib.nullcontext()
                with ctx:
                    result = multi_scale_pipeline(**multi_scale_call_kwargs)
                print(f"[DEBUG] multi_scale_pipeline tempo={time.perf_counter()-t_ms:.3f}s")

                if hasattr(result, "latents"):
                    latents = result.latents
                elif hasattr(result, "images") and isinstance(result.images, torch.Tensor):
                    latents = result.images
                else:
                    latents = result
                print(f"[DEBUG] Latentes (multi-escala): shape={tuple(latents.shape)}")
            else:
                single_pass_kwargs = call_kwargs.copy()
                first_pass_config = self.config.get("first_pass", {}).copy()
                
                single_pass_kwargs.update(
                    {
                        "skip_final_inference_steps": first_pass_config.get("skip_final_inference_steps"),
                        "stg_scale": first_pass_config.get("stg_scale"),
                        "stg_scale": first_pass_config.get("stg_scale"),
                        "rescaling_scale": first_pass_config.get("rescaling_scale"),
                        "guidance_timesteps": first_pass_config.get("guidance_timesteps"),
                        "skip_block_list": first_pass_config.get("skip_block_list"),
                        "num_inference_steps": first_pass_config.get("num_inference_steps"),
                        "skip_final_inference_steps": first_pass_config.get("skip_final_inference_steps"),
                        "cfg_star_rescale": first_pass_config.get("cfg_star_rescale"),
                        "downscale_factor": self.config["downscale_factor"],
                        
                        #"guidance_scale": float(guidance_scale),
                        #"stg_scale": first_pass_config.get("stg_scale"),
                        #"rescaling_scale": first_pass_config.get("rescaling_scale"),
                        #"skip_block_list": first_pass_config.get("skip_block_list"),
                    }
                )
                #schedule = first_pass_config.get("timesteps") or first_pass_config.get("guidance_timesteps")
                #if mode == "video-to-video":
                #    schedule = [0.7]; print("[INFO] Modo video-to-video (etapa única): timesteps=[0.7]")
                #if isinstance(schedule, (list, tuple)) and len(schedule) > 0:
                #    single_pass_kwargs["timesteps"] = schedule
                #    single_pass_kwargs["guidance_timesteps"] = schedule
                #print(f"[DEBUG] Single-pass: timesteps_len={len(schedule) if schedule else 0}")

                print("\n[INFO] Executando pipeline de etapa única...")
                t_sp = time.perf_counter()
                ctx = torch.autocast(device_type="cuda", dtype=self.runtime_autocast_dtype) if self.device == "cuda" else contextlib.nullcontext()
                with ctx:
                    result = self.pipeline(**single_pass_kwargs)
                print(f"[DEBUG] single-pass tempo={time.perf_counter()-t_sp:.3f}s")

                if hasattr(result, "latents"):
                    latents = result.latents
                elif hasattr(result, "images") and isinstance(result.images, torch.Tensor):
                    latents = result.images
                else:
                    latents = result
                print(f"[DEBUG] Latentes (single-pass) first : shape={tuple(latents.shape)}")

                single_pass_kwargs = call_kwargs.copy()
                first_pass_config = self.config.get("first_pass", {}).copy()
                second_pass_args = self.config.get("second_pass", {}).copy()
                second_pass = self.config.get("second_pass", {}).copy()
                
                single_pass_kwargs.update(
                    {
                        "latents" : latents,
                        "skip_final_inference_steps": second_pass.get("skip_final_inference_steps"),
                        "stg_scale": second_pass.get("stg_scale"),
                        "stg_scale": second_pass.get("stg_scale"),
                        "rescaling_scale": second_pass.get("rescaling_scale"),
                        "guidance_timesteps": second_pass.get("guidance_timesteps"),
                        "skip_block_list": second_pass.get("skip_block_list"),
                        "num_inference_steps": second_pass.get("num_inference_steps"),
                        "skip_final_inference_steps": 1 #first_pass_config.get("skip_final_inference_steps"),
                        "skip_initial_inference_steps": 16# second_pass.get("skip_initial_inference_steps"),
                        "cfg_star_rescale": second_pass.get("cfg_star_rescale"),
                        "downscale_factor": self.config["downscale_factor"],
                        "second_pass": second_pass_args,
                        #"guidance_scale": float(guidance_scale),
                        #"stg_scale": first_pass_config.get("stg_scale"),
                        #"rescaling_scale": first_pass_config.get("rescaling_scale"),
                        #"skip_block_list": first_pass_config.get("skip_block_list"),
                    }
                )
                #schedule = first_pass_config.get("timesteps") or first_pass_config.get("guidance_timesteps")
                #if mode == "video-to-video":
                #    schedule = [0.7]; print("[INFO] Modo video-to-video (etapa única): timesteps=[0.7]")
                #if isinstance(schedule, (list, tuple)) and len(schedule) > 0:
                #    single_pass_kwargs["timesteps"] = schedule
                #    single_pass_kwargs["guidance_timesteps"] = schedule
                #print(f"[DEBUG] Single-pass: timesteps_len={len(schedule) if schedule else 0}")

                #print("\n[INFO] Executando pipeline de etapa única...")
                t_sp = time.perf_counter()
                ctx = torch.autocast(device_type="cuda", dtype=self.runtime_autocast_dtype) if self.device == "cuda" else contextlib.nullcontext()
                with ctx:
                    result = self.pipeline(**single_pass_kwargs)
                print(f"[DEBUG] single-pass tempo={time.perf_counter()-t_sp:.3f}s")

                if hasattr(result, "latents"):
                    latents = result.latents
                elif hasattr(result, "images") and isinstance(result.images, torch.Tensor):
                    latents = result.images
                else:
                    latents = result
                print(f"[DEBUG] Latentes (single-pass) segunda: shape={tuple(latents.shape)}")
                

            
            # Staging e escrita MP4 (simples: VAE → pixels → MP4)
            
            latents_cpu = latents.detach().to("cpu", non_blocking=True)
            torch.cuda.empty_cache()
            try:
                torch.cuda.ipc_collect()
            except Exception:
                pass
                
            latents_parts = self._dividir_latentes_por_tamanho(latents_cpu,4,1)
            
            temp_dir = tempfile.mkdtemp(prefix="ltxv_"); self._register_tmp_dir(temp_dir)
            results_dir = "/app/output"; os.makedirs(results_dir, exist_ok=True)

            partes_mp4 = []
            par = 0
            
            for latents in latents_parts:
                print(f"[DEBUG] Partição {par}: {tuple(latents.shape)}")
       
                par = par + 1
                output_video_path = os.path.join(temp_dir, f"output_{used_seed}_{par}.mp4")
                final_output_path = None
    
                print("[DEBUG] Decodificando bloco de latentes com VAE → tensor de pixels...")
                # Usar manager com timestep por item; previne target_shape e rota NoneType.decode
                pixel_tensor = vae_manager_singleton.decode(
                    latents.to(self.device, non_blocking=True),
                    decode_timestep=float(self.config.get("decode_timestep", 0.05))
                )
                log_tensor_info(pixel_tensor, "Pixel tensor (VAE saída)")
    
                print("[DEBUG] Codificando MP4 a partir do tensor de pixels (bloco inteiro)...")
                video_encode_tool_singleton.save_video_from_tensor(
                    pixel_tensor,
                    output_video_path,
                    fps=call_kwargs["frame_rate"],
                    progress_callback=progress_callback
                )
    
                candidate = os.path.join(results_dir, f"output_par_{par}.mp4")
                try:
                    shutil.move(output_video_path, candidate)
                    final_output_path = candidate
                    print(f"[DEBUG] MP4 parte {par} movido para {final_output_path}")
                    partes_mp4.append(final_output_path)
                    
                except Exception as e:
                    final_output_path = output_video_path
                    print(f"[DEBUG] Falha no move; usando tmp como final: {e}")

            total_partes = len(partes_mp4)
            if (total_partes>1):
                final_vid = os.path.join(results_dir, f"concat_fim_{used_seed}.mp4")
                partes_mp4_fade = self._gerar_lista_com_transicoes(pasta=results_dir, video_paths=partes_mp4, crossfade_frames=8)
                self._concat_mp4s_no_reencode(partes_mp4_fade, final_vid)
            else:
                final_vid = partes_mp4[0]
            
            
            self._log_gpu_memory("Fim da Geração")
            return final_vid, used_seed
            

        except Exception as e:
            print("[DEBUG] EXCEÇÃO NA GERAÇÃO:")
            print("".join(traceback.format_exception(type(e), e, e.__traceback__)))
            raise
        finally:
            try:
                del latents
            except Exception:
                pass
            try:
                del multi_scale_pipeline
            except Exception:
                pass

            gc.collect()
            try:
                if self.device == "cuda":
                    torch.cuda.empty_cache()
                    try:
                        torch.cuda.ipc_collect()
                    except Exception:
                        pass
            except Exception as e:
                print(f"[DEBUG] Limpeza GPU no finally falhou: {e}")

            try:
                self.finalize(keep_paths=[])
            except Exception as e:
                print(f"[DEBUG] finalize() no finally falhou: {e}")

print("Criando instância do VideoService. O carregamento do modelo começará agora...")
video_generation_service = VideoService()