import os # Import the os module for working with the operating system from fastapi import FastAPI, HTTPException # Import necessary modules from FastAPI from pydantic import BaseModel # Import BaseModel from pydantic for data validation from huggingface_hub import InferenceClient # Import InferenceClient from huggingface_hub import uvicorn # Import uvicorn for running the FastAPI application app = FastAPI() # Create a FastAPI instance # Define the primary and fallback models primary = "mistralai/Mixtral-8x7B-Instruct-v0.1" fallbacks = ["mistralai/Mistral-7B-Instruct-v0.2", "mistralai/Mistral-7B-Instruct-v0.1"] # Define the data model for the request body class Item(BaseModel): input: str = None system_prompt: str = None system_output: str = None history: list = None templates: list = None temperature: float = 0.0 max_new_tokens: int = 1048 top_p: float = 0.15 repetition_penalty: float = 1.0 key: str = None # Function to generate the response JSON def generate_response_json(item, output, tokens, model_name): return { "settings": { "input": item.input if item.input is not None else "", "system prompt": item.system_prompt if item.system_prompt is not None else "", "system output": item.system_output if item.system_output is not None else "", "temperature": f"{item.temperature}" if item.temperature is not None else "", "max new tokens": f"{item.max_new_tokens}" if item.max_new_tokens is not None else "", "top p": f"{item.top_p}" if item.top_p is not None else "", "repetition penalty": f"{item.repetition_penalty}" if item.repetition_penalty is not None else "", "do sample": "True", "seed": "42" }, "response": { "output": output.strip().lstrip('\n').rstrip('\n').lstrip('').rstrip('').strip(), "unstripped": output, "tokens": tokens, "model": "primary" if model_name == primary else "fallback", "name": model_name } } # Endpoint for generating text @app.post("/") async def generate_text(item: Item = None): try: if item is None: raise HTTPException(status_code=400, detail="JSON body is required.") if item.input is None and item.system_prompt is None or item.input == "" and item.system_prompt == "": raise HTTPException(status_code=400, detail="Parameter `input` or `system prompt` is required.") input_ = "" if item.system_prompt != None and item.system_output != None: input_ = f"[INST] {item.system_prompt} [/INST] {item.system_output}" elif item.system_prompt != None: input_ = f"[INST] {item.system_prompt} [/INST]" elif item.system_output != None: input_ = f"{item.system_output}" if item.templates != None: for num, template in enumerate(item.templates, start=1): input_ += f"\n[INST] Beginning of archived conversation {num} [/INST]" for i in range(0, len(template), 2): input_ += f"\n[INST] {template[i]} [/INST]" input_ += f"\n{template[i + 1]}" input_ += f"\n[INST] End of archived conversation {num} [/INST]" input_ += f"\n[INST] Beginning of active conversation [/INST]" if item.history != None: for input_, output_ in item.history: input_ += f"\n[INST] {input_} [/INST]" input_ += f"\n{output_}" input_ += f"\n[INST] {item.input} [/INST]" temperature = float(item.temperature) if temperature < 1e-2: temperature = 1e-2 top_p = float(item.top_p) generate_kwargs = dict( temperature=temperature, max_new_tokens=item.max_new_tokens, top_p=top_p, repetition_penalty=item.repetition_penalty, do_sample=True, seed=42, ) tokens = 0 client = InferenceClient(primary) stream = client.text_generation(input_, **generate_kwargs, stream=True, details=True, return_full_text=True) output = "" for response in stream: tokens += 1 output += response.token.text return generate_response_json(item, output, tokens, primary) except HTTPException as http_error: raise http_error except Exception as e: tokens = 0 error = "" for model in fallbacks: try: client = InferenceClient(model) stream = client.text_generation(input_, **generate_kwargs, stream=True, details=True, return_full_text=True) output = "" for response in stream: tokens += 1 output += response.token.text return generate_response_json(item, output, tokens, model) except Exception as e: error = f"All models failed. {e}" if e else "All models failed." continue raise HTTPException(status_code=500, detail=error) if "KEY" in os.environ: if item.key != os.environ["KEY"]: raise HTTPException(status_code=401, detail="Valid key is required.") if __name__ == "__main__": uvicorn.run(app, host="0.0.0.0", port=8000)