import logging from functools import partial from typing import Optional import typer from bokeh.plotting import output_file as bokeh_output_file from bokeh.plotting import save from embedding_lenses.data import uploaded_file_to_dataframe from embedding_lenses.dimensionality_reduction import get_tsne_embeddings, get_umap_embeddings from embedding_lenses.embedding import load_model from perplexity_lenses.data import documents_df_to_sentences_df, hub_dataset_to_dataframe from perplexity_lenses.engine import DIMENSIONALITY_REDUCTION_ALGORITHMS, DOCUMENT_TYPES, EMBEDDING_MODELS, LANGUAGES, SEED, generate_plot from perplexity_lenses.perplexity import KenlmModel logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) app = typer.Typer() @app.command() def main( dataset: str = typer.Option("mc4", help="The name of the hub dataset or local csv/tsv file."), dataset_config: Optional[str] = typer.Option("es", help="The configuration of the hub dataset, if any. Does not apply to local csv/tsv files."), dataset_split: Optional[str] = typer.Option("train", help="The dataset split. Does not apply to local csv/tsv files."), text_column: str = typer.Option("text", help="The text field name."), language: str = typer.Option("es", help=f"The language of the text. Options: {LANGUAGES}"), doc_type: str = typer.Option("sentence", help=f"Whether to embed at the sentence or document level. Options: {DOCUMENT_TYPES}."), sample: int = typer.Option(1000, help="Maximum number of examples to use."), dimensionality_reduction: str = typer.Option( DIMENSIONALITY_REDUCTION_ALGORITHMS[0], help=f"Whether to use UMAP or t-SNE for dimensionality reduction. Options: {DIMENSIONALITY_REDUCTION_ALGORITHMS}.", ), model_name: str = typer.Option(EMBEDDING_MODELS[0], help=f"The sentence embedding model to use. Options: {EMBEDDING_MODELS}"), output_file: str = typer.Option("perplexity.html", help="The name of the output visualization HTML file."), ): """ Perplexity Lenses: Visualize text embeddings in 2D using colors to represent perplexity values. """ logger.info("Loading embedding model...") model = load_model(model_name) dimensionality_reduction_function = ( partial(get_umap_embeddings, random_state=SEED) if dimensionality_reduction.lower() == "umap" else partial(get_tsne_embeddings, random_state=SEED) ) logger.info("Loading KenLM model...") kenlm_model = KenlmModel.from_pretrained(language) logger.info("Loading dataset...") if dataset.endswith(".csv") or dataset.endswith(".tsv"): df = uploaded_file_to_dataframe(dataset) if doc_type.lower() == "sentence": df = documents_df_to_sentences_df(df, text_column, sample, seed=SEED) df["perplexity"] = df[text_column].map(kenlm_model.get_perplexity) else: df = hub_dataset_to_dataframe(dataset, dataset_config, dataset_split, sample, text_column, kenlm_model, seed=SEED, doc_type=doc_type) # Round perplexity df["perplexity"] = df["perplexity"].round().astype(int) logger.info(f"Perplexity range: {df['perplexity'].min()} - {df['perplexity'].max()}") plot = generate_plot(df, text_column, "perplexity", None, dimensionality_reduction_function, model, seed=SEED) logger.info("Saving plot") bokeh_output_file(output_file) save(plot) logger.info("Done") if __name__ == "__main__": app()