import sys import os argv = os.environ.get('VALLE_ARGS', None) if argv: sys.argv = sys.argv + argv.split(" ") import re import math import argparse import random import tempfile import functools import spaces import torch import numpy as np import torchaudio import gradio as gr from pathlib import Path from vall_e.inference import TTS, cfg from vall_e.train import train from vall_e.utils import get_devices, setup_logging, timer from vall_e.utils.io import json_read, json_stringify from vall_e.emb.qnt import decode_to_wave from vall_e.data import get_lang_symmap, get_random_prompt from vall_e.models.arch import AVAILABLE_ATTENTIONS try: import spaces USING_SPACES = True spaces_zerogpu_decorator = spaces.GPU except Exception as e: USING_SPACES = False def spaces_zerogpu_decorator(func): return func is_windows = sys.platform.startswith("win") tts = None layout = {} layout["inference_tts"] = {} layout["inference_stt"] = {} layout["training"] = {} layout["dataset"] = {} layout["settings"] = {} for k in layout.keys(): layout[k]["inputs"] = { "progress": None } layout[k]["outputs"] = {} layout[k]["buttons"] = {} # there's got to be a better way to go about this def gradio_wrapper(inputs): def decorated(fun): @functools.wraps(fun) def wrapped_function(*args, **kwargs): for i, key in enumerate(inputs): kwargs[key] = args[i] try: return fun(**kwargs) except Exception as e: raise gr.Error(str(e)) return wrapped_function return decorated # returns a list of models, assuming the models are placed under ./training/ or ./models/ or ./data/models/ def get_model_paths( paths=[Path("./training/"), Path("./models/"), Path("./data/models/")] ): configs = [] for path in paths: if not path.exists(): continue for yaml in path.glob("**/*.yaml"): if "/logs/" in str(yaml): continue configs.append( yaml ) for sft in path.glob("**/*.sft"): if "/logs/" in str(sft): continue configs.append( sft ) if is_windows: configs = [ str(p) for p in configs ] return configs def get_dtypes(): return ["float32", "float16", "bfloat16", "float8_e5m2", "float8_e4m3fn", "auto"] def get_attentions(): return AVAILABLE_ATTENTIONS + ["auto"] #@gradio_wrapper(inputs=layout["settings"]["inputs"].keys()) def load_model( config, device, dtype, attention ): gr.Info(f"Loading: {config}") try: init_tts( config=Path(config), restart=True, device=device, dtype=dtype, attention=attention ) except Exception as e: raise gr.Error(e) gr.Info(f"Loaded model") def get_speakers(): return cfg.dataset.training def get_languages(): return get_lang_symmap().keys() #@gradio_wrapper(inputs=layout["dataset"]["inputs"].keys()) def load_sample( speaker ): metadata_path = cfg.metadata_dir / f'{speaker}.json' metadata = json_read( metadata_path ) if not metadata: raise gr.Error(f"Metadata not found: {metadata_path}") key = random.choice( list(metadata.keys()) ) path = cfg.data_dir / speaker / f'{key}.enc' # to-do: get proper file extension data = json_stringify( metadata[key], pretty=True ) wav, sr = None, None if path.exists(): artifact = np.load(path, allow_pickle=True)[()] codes = torch.from_numpy(artifact["codes"].astype(int))[0].t().to(dtype=torch.int16, device=cfg.device) wav, sr = decode_to_wave( codes ) wav = wav.squeeze(0).cpu().numpy() return data, (sr, wav) def init_tts(config=None, lora=None, restart=False, device="cuda", dtype="auto", attention=None): global tts if tts is not None: if not restart: return tts del tts tts = None parser = argparse.ArgumentParser(allow_abbrev=False, add_help=False) parser.add_argument("--yaml", type=Path, default=os.environ.get('VALLE_YAML', None)) # os environ so it can be specified in a HuggingFace Space too parser.add_argument("--model", type=Path, default=os.environ.get('VALLE_MODEL', None)) # os environ so it can be specified in a HuggingFace Space too parser.add_argument("--lora", type=Path, default=os.environ.get('VALLE_LORA', None)) # os environ so it can be specified in a HuggingFace Space too parser.add_argument("--device", type=str, default=device) parser.add_argument("--amp", action="store_true") parser.add_argument("--dtype", type=str, default=dtype) parser.add_argument("--attention", type=str, default=attention) args, unknown = parser.parse_known_args() if config: if config.suffix == ".yaml" and not args.yaml: args.yaml = config elif config.suffix == ".sft" and not args.model: args.model = config if lora and not args.lora: args.lora = lora if args.yaml: config = args.yaml elif args.model: config = args.model if args.lora: lora = args.lora tts = TTS( config=config, lora=args.lora, device=args.device, dtype=args.dtype if args.dtype != "auto" else None, amp=args.amp, attention=args.attention ) return tts @spaces_zerogpu_decorator @gradio_wrapper(inputs=layout["inference_tts"]["inputs"].keys()) def do_inference_tts( progress=gr.Progress(track_tqdm=True), *args, **kwargs ): if not cfg.models: raise Exception("No model loaded.") if kwargs.pop("dynamic-sampling", False): kwargs['min-ar-temp'] = 0.01 if kwargs['ar-temp'] > 0.01 else 0.0 kwargs['min-nar-temp'] = 0.0 # 0.85 if kwargs['nar-temp'] > 0.85 else 0.0 # should probably disable it for the NAR else: kwargs['min-ar-temp'] = -1 kwargs['min-nar-temp'] = -1 parser = argparse.ArgumentParser(allow_abbrev=False, add_help=False) # I'm very sure I can procedurally generate this list parser.add_argument("--text", type=str, default=kwargs["text"]) parser.add_argument("--task", type=str, default="tts") parser.add_argument("--references", type=str, default=kwargs["reference"]) parser.add_argument("--language", type=str, default=kwargs["language"]) parser.add_argument("--input-prompt-length", type=float, default=kwargs["input-prompt-length"]) parser.add_argument("--input-prompt-prefix", action='store_true', default=kwargs["input-prompt-prefix"] if cfg.experimental else False) parser.add_argument("--max-ar-steps", type=int, default=int(kwargs["max-seconds"]*cfg.dataset.frames_per_second)) parser.add_argument("--max-nar-levels", type=int, default=kwargs["max-nar-levels"] if cfg.experimental else 0) parser.add_argument("--ar-temp", type=float, default=kwargs["ar-temp"]) parser.add_argument("--nar-temp", type=float, default=kwargs["nar-temp"]) parser.add_argument("--min-ar-temp", type=float, default=kwargs["min-ar-temp"]) parser.add_argument("--min-nar-temp", type=float, default=kwargs["min-nar-temp"]) parser.add_argument("--prefix-silence", type=float, default=kwargs["prefix-silence"] if cfg.experimental else 0) parser.add_argument("--top-p", type=float, default=kwargs["top-p"]) parser.add_argument("--top-k", type=int, default=kwargs["top-k"]) parser.add_argument("--min-p", type=float, default=kwargs["min-p"]) parser.add_argument("--repetition-penalty", type=float, default=kwargs["repetition-penalty"]) parser.add_argument("--repetition-penalty-decay", type=float, default=kwargs["repetition-penalty-decay"]) parser.add_argument("--length-penalty", type=float, default=kwargs["length-penalty"]) parser.add_argument("--beam-width", type=int, default=kwargs["beam-width"]) parser.add_argument("--mirostat-tau", type=float, default=kwargs["mirostat-tau"]) parser.add_argument("--mirostat-eta", type=float, default=kwargs["mirostat-eta"]) parser.add_argument("--dry-multiplier", type=float, default=kwargs["dry-multiplier"]) parser.add_argument("--dry-base", type=float, default=kwargs["dry-base"]) parser.add_argument("--dry-allowed-length", type=int, default=kwargs["dry-allowed-length"]) parser.add_argument("--entropix-sampling", action="store_true") parser.add_argument("--layer-skip", action="store_true") parser.add_argument("--layer-skip-exit-layer", type=int, default=kwargs["layer-skip-exit-layer"] if cfg.experimental else -1) parser.add_argument("--layer-skip-entropy-threshold", type=int, default=kwargs["layer-skip-entropy-threshold"] if cfg.experimental else 0.1) parser.add_argument("--layer-skip-varentropy-threshold", type=int, default=kwargs["layer-skip-varentropy-threshold"] if cfg.experimental else 0.1) parser.add_argument("--refine-on-stop", action="store_true") args, unknown = parser.parse_known_args() if is_windows: tmp = tempfile.NamedTemporaryFile(suffix='.wav', delete=False) else: tmp = tempfile.NamedTemporaryFile(suffix='.wav') """ if not args.references: raise Exception("No reference audio provided.") """ if kwargs.pop("entropix-sampling", False): args.entropix_sampling = True if kwargs.pop("layer-skip", False): args.layer_skip = True if kwargs.pop("refine-on-stop", False): args.refine_on_stop = True tts = init_tts() gr.Info("Inferencing...") with timer("Inferenced in", callback=lambda msg: gr.Info( msg )) as t: wav, sr = tts.inference( text=args.text, language=args.language, task=args.task, references=args.references.split(";") if args.references is not None else [], out_path=tmp.name, max_ar_steps=args.max_ar_steps, max_nar_levels=args.max_nar_levels, input_prompt_length=args.input_prompt_length, input_prompt_prefix=args.input_prompt_prefix, prefix_silence=args.prefix_silence, ar_temp=args.ar_temp, nar_temp=args.nar_temp, min_ar_temp=args.min_ar_temp, min_nar_temp=args.min_nar_temp, top_p=args.top_p, top_k=args.top_k, min_p=args.min_p, beam_width=args.beam_width, repetition_penalty=args.repetition_penalty, repetition_penalty_decay=args.repetition_penalty_decay, length_penalty=args.length_penalty, mirostat_tau=args.mirostat_tau, mirostat_eta=args.mirostat_eta, dry_multiplier=args.dry_multiplier, dry_base=args.dry_base, dry_allowed_length=args.dry_allowed_length, entropix_sampling=args.entropix_sampling, layer_skip=args.layer_skip, layer_skip_entropy_threshold=args.layer_skip_entropy_threshold, layer_skip_varentropy_threshold=args.layer_skip_varentropy_threshold, refine_on_stop=args.refine_on_stop, ) wav = wav.squeeze(0).cpu().numpy() return (sr, wav) @gradio_wrapper(inputs=layout["inference_stt"]["inputs"].keys()) def do_inference_stt( progress=gr.Progress(track_tqdm=True), *args, **kwargs ): if not cfg.models: raise Exception("No model loaded.") if kwargs.pop("dynamic-sampling", False): kwargs['min-ar-temp'] = 0.85 if kwargs['ar-temp'] > 0.85 else 0.0 else: kwargs['min-ar-temp'] = -1 parser = argparse.ArgumentParser(allow_abbrev=False, add_help=False) # I'm very sure I can procedurally generate this list parser.add_argument("--references", type=str, default=kwargs["reference"]) parser.add_argument("--language", type=str, default=kwargs["language"]) parser.add_argument("--max-ar-steps", type=int, default=0) parser.add_argument("--ar-temp", type=float, default=kwargs["ar-temp"]) parser.add_argument("--min-ar-temp", type=float, default=kwargs["min-ar-temp"]) parser.add_argument("--top-p", type=float, default=kwargs["top-p"]) parser.add_argument("--top-k", type=int, default=kwargs["top-k"]) parser.add_argument("--min-p", type=int, default=kwargs["min-p"]) parser.add_argument("--repetition-penalty", type=float, default=kwargs["repetition-penalty"]) parser.add_argument("--repetition-penalty-decay", type=float, default=kwargs["repetition-penalty-decay"]) parser.add_argument("--length-penalty", type=float, default=kwargs["length-penalty"]) parser.add_argument("--beam-width", type=int, default=kwargs["beam-width"]) parser.add_argument("--mirostat-tau", type=float, default=kwargs["mirostat-tau"]) parser.add_argument("--mirostat-eta", type=float, default=kwargs["mirostat-eta"]) parser.add_argument("--dry-multiplier", type=float, default=kwargs["dry-multiplier"]) parser.add_argument("--dry-base", type=float, default=kwargs["dry-base"]) parser.add_argument("--dry-allowed-length", type=int, default=kwargs["dry-allowed-length"]) parser.add_argument("--entropix-sampling", action="store_true") args, unknown = parser.parse_known_args() """ if not args.references: raise Exception("No reference audio provided.") """ args.references = args.references.split(";") if args.references is not None else [] if args.max_ar_steps == 0: for i, path in enumerate( args.references ): metadata = torchaudio.info(path) duration = metadata.num_frames / metadata.sample_rate args.max_ar_steps += duration args.max_ar_steps = math.floor( args.max_ar_steps * 20 ) # assume 20 tokens per second if kwargs.pop("entropix-sampling", False): args.entropix_sampling = True tts = init_tts() gr.Info("Inferencing...") with timer("Inferenced in") as t: text = tts.inference( text="", language=args.language, task="stt", references=args.references, max_ar_steps=args.max_ar_steps, ar_temp=args.ar_temp, min_ar_temp=args.min_ar_temp, top_p=args.top_p, top_k=args.top_k, min_p=args.min_p, repetition_penalty=args.repetition_penalty, repetition_penalty_decay=args.repetition_penalty_decay, length_penalty=args.length_penalty, mirostat_tau=args.mirostat_tau, mirostat_eta=args.mirostat_eta, dry_multiplier=args.dry_multiplier, dry_base=args.dry_base, dry_allowed_length=args.dry_allowed_length, entropix_sampling=args.entropix_sampling, ) return text """ @gradio_wrapper(inputs=layout["training"]["inputs"].keys()) def do_training( progress=gr.Progress(track_tqdm=True), *args, **kwargs ): while True: metrics = next(it) yield metrics """ # setup args parser = argparse.ArgumentParser(allow_abbrev=False) parser.add_argument("--yaml", type=Path, default=os.environ.get('VALLE_YAML', None)) # os environ so it can be specified in a HuggingFace Space too parser.add_argument("--model", type=Path, default=os.environ.get('VALLE_MODEL', None)) # os environ so it can be specified in a HuggingFace Space too parser.add_argument("--listen", default=None, help="Path for Gradio to listen on") parser.add_argument("--share", action="store_true") parser.add_argument("--render_markdown", action="store_true", default="VALLE_YAML" in os.environ) args, unknown = parser.parse_known_args() args.listen_host = None args.listen_port = None args.listen_path = None if args.listen: try: match = re.findall(r"^(?:(.+?):(\d+))?(\/.*?)?$", args.listen)[0] args.listen_host = match[0] if match[0] != "" else "127.0.0.1" args.listen_port = match[1] if match[1] != "" else None args.listen_path = match[2] if match[2] != "" else "/" except Exception as e: pass if args.listen_port is not None: args.listen_port = int(args.listen_port) if args.listen_port == 0: args.listen_port = None # setup gradio ui = gr.Blocks() with ui: with gr.Tab("Inference"): with gr.Tab("Text-to-Speech"): with gr.Row(): with gr.Column(scale=8): layout["inference_tts"]["inputs"]["text"] = gr.Textbox(lines=5, value=get_random_prompt, label="Input Prompt") with gr.Row(): with gr.Column(scale=1): layout["inference_tts"]["inputs"]["reference"] = gr.Audio(label="Audio Input", sources=["upload"], type="filepath") #, info="Reference audio for TTS") # layout["inference_tts"]["stop"] = gr.Button(value="Stop") layout["inference_tts"]["outputs"]["output"] = gr.Audio(label="Output") layout["inference_tts"]["buttons"]["inference"] = gr.Button(value="Inference") with gr.Column(scale=7): with gr.Tab("Basic Settings"): with gr.Row(): layout["inference_tts"]["inputs"]["max-seconds"] = gr.Slider(value=12, minimum=1, maximum=32, step=0.1, label="Maximum Seconds", info="Limits how many steps to perform in the AR pass.") layout["inference_tts"]["inputs"]["input-prompt-length"] = gr.Slider(value=5.0, minimum=0.0, maximum=12.0, step=0.05, label="Input Prompt Repeat/Trim Length", info="Repeats and trims the input prompt down to X seconds. Set 0 to disable.") with gr.Row(): layout["inference_tts"]["inputs"]["ar-temp"] = gr.Slider(value=0.5, minimum=0.0, maximum=1.5, step=0.05, label="Temperature (AR)", info="Modifies the randomness from the samples in the AR. (0 to greedy* sample)") layout["inference_tts"]["inputs"]["nar-temp"] = gr.Slider(value=0.0, minimum=0.0, maximum=1.5, step=0.05, label="Temperature (NAR)", info="Modifies the randomness from the samples in the NAR. (0 to greedy sample)") with gr.Row(): layout["inference_tts"]["inputs"]["language"] = gr.Dropdown(choices=get_languages(), label="Language", value="en") with gr.Tab("Sampler Settings"): with gr.Row(): layout["inference_tts"]["inputs"]["top-p"] = gr.Slider(value=1.0, minimum=0.0, maximum=1.0, step=0.05, label="Top P", info=r"Limits the samples that are outside the top P% of probabilities.") layout["inference_tts"]["inputs"]["top-k"] = gr.Slider(value=0, minimum=0, maximum=1024, step=1, label="Top K", info="Limits the samples to the top K of probabilities.") layout["inference_tts"]["inputs"]["min-p"] = gr.Slider(value=0.0, minimum=0.0, maximum=1.0, step=0.05, label="Min P") layout["inference_tts"]["inputs"]["beam-width"] = gr.Slider(value=0, minimum=0, maximum=32, step=1, label="Beam Width", info="Number of branches to search through for beam search sampling.") with gr.Row(): layout["inference_tts"]["inputs"]["repetition-penalty"] = gr.Slider(value=1.5, minimum=-2.0, maximum=2.0, step=0.05, label="Repetition Penalty", info="Incurs a penalty to tokens based on how often they appear in a sequence.") layout["inference_tts"]["inputs"]["repetition-penalty-decay"] = gr.Slider(value=0.0, minimum=-2.0, maximum=2.0, step=0.05, label="Repetition Penalty Length Decay", info="Modifies the reptition penalty based on how far back in time the token appeared in the sequence.") layout["inference_tts"]["inputs"]["length-penalty"] = gr.Slider(value=0.0, minimum=-2.0, maximum=2.0, step=0.05, label="Length Penalty", info="(AR only) Modifies the probability of a stop token based on the current length of the sequence.") with gr.Row(): layout["inference_tts"]["inputs"]["mirostat-tau"] = gr.Slider(value=0.0, minimum=0.0, maximum=8.0, step=0.05, label="Mirostat τ (Tau)", info="The \"surprise\" value when performing mirostat sampling. 0 to disable.") layout["inference_tts"]["inputs"]["mirostat-eta"] = gr.Slider(value=0.0, minimum=0.0, maximum=2.0, step=0.05, label="Mirostat η (Eta)", info="The \"learning rate\" during mirostat sampling applied to the maximum surprise.") with gr.Row(): layout["inference_tts"]["inputs"]["dry-multiplier"] = gr.Slider(value=0.0, minimum=0.0, maximum=8.0, step=0.05, label="DRY Multiplier", info="The multiplying factor for the DRY score penalty (0 to disable DRY sampling).") layout["inference_tts"]["inputs"]["dry-base"] = gr.Slider(value=1.75, minimum=0.0, maximum=8.0, step=0.05, label="DRY Base", info="The base of the exponent in the DRY score penalty") layout["inference_tts"]["inputs"]["dry-allowed-length"] = gr.Slider(value=2, minimum=0, maximum=75, step=1, label="Allowed Length", info="The maximimum length a token can be to perform DRY penalty with.") if cfg.experimental: with gr.Tab("Experimental Settings"): with gr.Row(): layout["inference_tts"]["inputs"]["max-nar-levels"] = gr.Slider(value=7, minimum=0, maximum=7, step=1, label="Max NAR Levels", info="Limits how many steps to perform in the NAR pass.") layout["inference_tts"]["inputs"]["input-prompt-prefix"] = gr.Checkbox(label="Input Prompt as Prefix", info="Treats the input prompt clip as the prefix of the generated sequence.") with gr.Row(): layout["inference_tts"]["inputs"]["prefix-silence"] = gr.Slider(value=0.0, minimum=0.0, maximum=1.0, step=0.05, label="Silence Prefix Duration", info="Amount of silence to prefix to the output response before beginning inference.") with gr.Row(): layout["inference_tts"]["inputs"]["dynamic-sampling"] = gr.Checkbox(label="Dynamic Temperature", info="Dynamically adjusts the temperature based on the highest confident predicted token per sampling step.") layout["inference_tts"]["inputs"]["entropix-sampling"] = gr.Checkbox(label="Entropix Sampling", info="Dynamically samples based on entropy/varentropy values from the logits / attention scores.") with gr.Row(): layout["inference_tts"]["inputs"]["layer-skip"] = gr.Checkbox(label="Layer Skip", info="Performs self-speculative early exit 'sampling'") layout["inference_tts"]["inputs"]["refine-on-stop"] = gr.Checkbox(label="Refine on ", info="Uses the last step's logits for the AR sequence instead.") with gr.Row(): layout["inference_tts"]["inputs"]["layer-skip-exit-layer"] = gr.Slider(value=11, minimum=0, maximum=11, step=1, label="Layer Skip Exit Layer", info="Maximum model layer to exit early from.") layout["inference_tts"]["inputs"]["layer-skip-entropy-threshold"] = gr.Slider(value=0.1, minimum=0, maximum=1.0, step=0.01, label="Layer Skip Entropy Threshold", info="Entropy threshold for early-exit") layout["inference_tts"]["inputs"]["layer-skip-varentropy-threshold"] = gr.Slider(value=0.1, minimum=0, maximum=1.0, step=0.01, label="Layer Skip Varentropy Threshold", info="Varentropy threshold for early-exit") layout["inference_tts"]["buttons"]["inference"].click( fn=do_inference_tts, inputs=[ x for x in layout["inference_tts"]["inputs"].values() if x is not None], outputs=[ x for x in layout["inference_tts"]["outputs"].values() if x is not None] ) with gr.Tab("Speech to Text"): with gr.Row(): with gr.Column(scale=8): layout["inference_stt"]["outputs"]["ouput"] = gr.Textbox(lines=1, label="Output Transcription") with gr.Row(): with gr.Column(scale=1): layout["inference_stt"]["inputs"]["reference"] = gr.Audio(label="Audio Input", sources=["upload"], type="filepath") #, info="Reference audio for TTS") # layout["inference_stt"]["stop"] = gr.Button(value="Stop") layout["inference_stt"]["buttons"]["inference"] = gr.Button(value="Inference") with gr.Column(scale=7): with gr.Tab("Basic Settings"): with gr.Row(): layout["inference_stt"]["inputs"]["ar-temp"] = gr.Slider(value=0.0, minimum=0.0, maximum=1.5, step=0.05, label="Temperature (AR)", info="Modifies the randomness from the samples in the AR. (0 to greedy sample)") with gr.Row(): layout["inference_stt"]["inputs"]["dynamic-sampling"] = gr.Checkbox(label="Dynamic Temperature", info="Dynamically adjusts the temperature based on the highest confident predicted token per sampling step.") layout["inference_stt"]["inputs"]["language"] = gr.Dropdown(choices=get_languages(), label="Language", value="en") with gr.Tab("Sampler Settings"): with gr.Row(): layout["inference_stt"]["inputs"]["top-p"] = gr.Slider(value=1.0, minimum=0.0, maximum=1.0, step=0.05, label="Top P", info=r"Limits the samples that are outside the top P% of probabilities.") layout["inference_stt"]["inputs"]["top-k"] = gr.Slider(value=0, minimum=0, maximum=1024, step=1, label="Top K", info="Limits the samples to the top K of probabilities.") layout["inference_stt"]["inputs"]["min-p"] = gr.Slider(value=0.0, minimum=0.0, maximum=1.0, step=0.05, label="Min P") layout["inference_stt"]["inputs"]["beam-width"] = gr.Slider(value=0, minimum=0, maximum=32, step=1, label="Beam Width", info="Number of branches to search through for beam search sampling.") with gr.Row(): layout["inference_stt"]["inputs"]["repetition-penalty"] = gr.Slider(value=1.25, minimum=-2.0, maximum=2.0, step=0.05, label="Repetition Penalty", info="Incurs a penalty to tokens based on how often they appear in a sequence.") layout["inference_stt"]["inputs"]["repetition-penalty-decay"] = gr.Slider(value=0.0, minimum=-2.0, maximum=2.0, step=0.05, label="Repetition Penalty Length Decay", info="Modifies the reptition penalty based on how far back in time the token appeared in the sequence.") layout["inference_stt"]["inputs"]["length-penalty"] = gr.Slider(value=0.0, minimum=-2.0, maximum=2.0, step=0.05, label="Length Penalty", info="(AR only) Modifies the probability of a stop token based on the current length of the sequence.") with gr.Row(): layout["inference_stt"]["inputs"]["mirostat-tau"] = gr.Slider(value=0.0, minimum=0.0, maximum=8.0, step=0.05, label="Mirostat τ (Tau)", info="The \"surprise\" value when performing mirostat sampling. 0 to disable.") layout["inference_stt"]["inputs"]["mirostat-eta"] = gr.Slider(value=0.0, minimum=0.0, maximum=2.0, step=0.05, label="Mirostat η (Eta)", info="The \"learning rate\" during mirostat sampling applied to the maximum surprise.") with gr.Row(): layout["inference_stt"]["inputs"]["dry-multiplier"] = gr.Slider(value=0.0, minimum=0.0, maximum=8.0, step=0.05, label="DRY Multiplier", info="The multiplying factor for the DRY score penalty (0 to disable DRY sampling).") layout["inference_stt"]["inputs"]["dry-base"] = gr.Slider(value=1.75, minimum=0.0, maximum=8.0, step=0.05, label="DRY Base", info="The base of the exponent in the DRY score penalty") layout["inference_stt"]["inputs"]["dry-allowed-length"] = gr.Slider(value=2, minimum=0, maximum=75, step=1, label="Allowed Length", info="The maximimum length a token can be to perform DRY penalty with.") layout["inference_stt"]["buttons"]["inference"].click( fn=do_inference_stt, inputs=[ x for x in layout["inference_stt"]["inputs"].values() if x is not None], outputs=[ x for x in layout["inference_stt"]["outputs"].values() if x is not None] ) """ with gr.Tab("Training"): with gr.Row(): with gr.Column(scale=1): layout["training"]["outputs"]["console"] = gr.Textbox(lines=8, label="Console Log") with gr.Row(): with gr.Column(scale=1): layout["training"]["buttons"]["train"] = gr.Button(value="Train") layout["training"]["buttons"]["train"].click( fn=do_training, outputs=[ x for x in layout["training"]["outputs"].values() if x is not None], ) """ if not USING_SPACES: with gr.Tab("Dataset"): with gr.Row(): with gr.Column(scale=7): layout["dataset"]["outputs"]["transcription"] = gr.Textbox(lines=5, label="Sample Metadata") with gr.Column(scale=1): layout["dataset"]["inputs"]["speaker"] = gr.Dropdown(choices=get_speakers(), label="Speakers") layout["dataset"]["outputs"]["audio"] = gr.Audio(label="Output") layout["dataset"]["buttons"]["sample"] = gr.Button(value="Sample") layout["dataset"]["buttons"]["sample"].click( fn=load_sample, inputs=[ x for x in layout["dataset"]["inputs"].values() if x is not None], outputs=[ x for x in layout["dataset"]["outputs"].values() if x is not None], ) if not USING_SPACES: with gr.Tab("Settings"): with gr.Row(): with gr.Column(scale=7): with gr.Row(): layout["settings"]["inputs"]["models"] = gr.Dropdown(choices=get_model_paths(), value=args.yaml or args.model, label="Model") layout["settings"]["inputs"]["device"] = gr.Dropdown(choices=get_devices(), value="cuda:0", label="Device") layout["settings"]["inputs"]["dtype"] = gr.Dropdown(choices=get_dtypes(), value="auto", label="Precision") layout["settings"]["inputs"]["attentions"] = gr.Dropdown(choices=get_attentions(), value="auto", label="Attentions") with gr.Column(scale=1): layout["settings"]["buttons"]["load"] = gr.Button(value="Load Model") layout["settings"]["buttons"]["load"].click( fn=load_model, inputs=[ x for x in layout["settings"]["inputs"].values() if x is not None], outputs=[ x for x in layout["settings"]["outputs"].values() if x is not None], ) if os.path.exists("README.md") and args.render_markdown: md = open("README.md", "r", encoding="utf-8").read() # remove HF's metadata if md.startswith("---\n"): md = "".join(md.split("---")[2:]) gr.Markdown(md) def start( lock=True ): setup_logging() if not USING_SPACES: ui.queue(max_size=8) ui.launch(share=args.share, server_name=args.listen_host, server_port=args.listen_port, prevent_thread_lock=not lock) else: ui.queue().launch() if __name__ == "__main__": start()