from PIL import Image import torch import requests import gradio as gr model2 = torch.hub.load( "AK391/animegan2-pytorch:main", "generator", pretrained=True, device="cpu", progress=False ) model1 = torch.hub.load("AK391/animegan2-pytorch:main", "generator", pretrained="face_paint_512_v1", device="cpu") face2paint = torch.hub.load( 'AK391/animegan2-pytorch:main', 'face2paint', size=512, device="cpu", side_by_side=False ) def inference(img, ver): if ver == 'version 2 (🔺 robustness,🔻 stylization)': out = face2paint(model2, img) else: out = face2paint(model1, img) return out title = "Face Trans For You" description = "Online Demo for AnimeGanv2 Face Portrait v2. To use it, simply upload your image, or click one of the examples to load them. Please use a cropped portrait picture for best results similar to the examples below." # article = "
Github Repo Pytorch | Github Repo ONNX
samples from repo:
" # article = "samples:
" article = "❤ from Bruce
" img_musk = Image.open(requests.get("https://z3.ax1x.com/2021/11/22/IxVvz4.png", stream=True).raw).convert("RGB") examples = [[img_musk, 'version 2 (🔺 robustness,🔻 stylization)'], ['IU.png', 'version 1 (🔺 stylization, 🔻 robustness)']] gr.Interface(inference, [gr.inputs.Image(type="pil"), gr.inputs.Radio(['version 1 (🔺 stylization, 🔻 robustness)', 'version 2 (🔺 robustness,🔻 stylization)'], type="value", default='version 2 (🔺 robustness,🔻 stylization)', label='version') ], gr.outputs.Image(type="pil"), title=title, description=description, article=article, enable_queue=True, examples=examples, allow_flagging=False).launch()