elibrowne commited on
Commit
a425fa9
1 Parent(s): 3603153

Loading data?

Browse files
Files changed (1) hide show
  1. app.py +12 -3
app.py CHANGED
@@ -1,15 +1,14 @@
1
  import gradio as gr
2
  import os
3
 
4
- # These libraries are used in loading and storing persistent data
 
5
  import json
6
  from datetime import datetime
7
  from pathlib import Path
8
  from uuid import uuid4
9
  from huggingface_hub import CommitScheduler
10
 
11
- # PERSISTENT DATA STORAGE: these are used to upload user responses to a dataset
12
-
13
  JSON_DATASET_DIR = Path("json_dataset")
14
  JSON_DATASET_DIR.mkdir(parents=True, exist_ok=True)
15
 
@@ -29,6 +28,13 @@ def save_json(score1, score2):
29
  json.dump({"relevance": score1, "novelty": score2, "datetime": datetime.now().isoformat()}, f)
30
  f.write("\n")
31
 
 
 
 
 
 
 
 
32
  # VARIABLES: will eventually be loaded with JSON from a dataset
33
 
34
  question_text = """
@@ -50,6 +56,9 @@ with gr.Blocks() as user_eval:
50
  # Passage text
51
  with gr.Column(scale = 2) as passages:
52
  passage_display = gr.Markdown("""
 
 
 
53
  ### Relevant Passages
54
  - Dataset 1
55
  - Dataset 2
 
1
  import gradio as gr
2
  import os
3
 
4
+ # PERSISTENT DATA STORAGE: these are used to upload user responses to a dataset
5
+
6
  import json
7
  from datetime import datetime
8
  from pathlib import Path
9
  from uuid import uuid4
10
  from huggingface_hub import CommitScheduler
11
 
 
 
12
  JSON_DATASET_DIR = Path("json_dataset")
13
  JSON_DATASET_DIR.mkdir(parents=True, exist_ok=True)
14
 
 
28
  json.dump({"relevance": score1, "novelty": score2, "datetime": datetime.now().isoformat()}, f)
29
  f.write("\n")
30
 
31
+ # READING EXISTING DATA: this is used to read questionss
32
+
33
+ from datasets import load_dataset
34
+ qa_data = load_dataset("ebrowne/test-data", data_files = "test.json")
35
+ loaded_text = qa_data["train"]["example_string"][0]
36
+
37
+
38
  # VARIABLES: will eventually be loaded with JSON from a dataset
39
 
40
  question_text = """
 
56
  # Passage text
57
  with gr.Column(scale = 2) as passages:
58
  passage_display = gr.Markdown("""
59
+ ### Question
60
+ """ + loaded_text +
61
+ """
62
  ### Relevant Passages
63
  - Dataset 1
64
  - Dataset 2