feat: add crop and identification stages
Browse files- app.py +45 -27
- requirements.txt +7 -0
- utils.py +863 -7
app.py
CHANGED
@@ -3,24 +3,22 @@ Gradio app to showcase the pyronear model for early forest fire detection.
|
|
3 |
"""
|
4 |
|
5 |
from pathlib import Path
|
6 |
-
from typing import Tuple
|
7 |
|
8 |
import gradio as gr
|
9 |
import numpy as np
|
10 |
from PIL import Image
|
11 |
-
import subprocess
|
12 |
-
import shutil
|
13 |
-
import logging
|
14 |
-
import os
|
15 |
-
import torch
|
16 |
-
import pandas as pd
|
17 |
from ultralytics import YOLO
|
18 |
|
19 |
from utils import (
|
20 |
bgr_to_rgb,
|
|
|
21 |
get_best_device,
|
22 |
-
|
23 |
-
|
|
|
|
|
|
|
24 |
)
|
25 |
|
26 |
|
@@ -29,14 +27,12 @@ def prediction_to_str(yolo_prediction) -> str:
|
|
29 |
Turn the yolo_prediction into a human friendly string.
|
30 |
"""
|
31 |
boxes = yolo_prediction.boxes
|
32 |
-
classes = boxes.cls.cpu().numpy().astype(np.int8)
|
33 |
-
n_bear = len([c for c in classes if c == 0])
|
34 |
-
n_soft_coral = len([c for c in classes if c == 1])
|
35 |
-
|
36 |
return f"""{len(boxes.conf)} bear detected! Trigger the bear repellent 🐻"""
|
37 |
|
38 |
|
39 |
-
def interface_fn(
|
|
|
|
|
40 |
"""
|
41 |
Main interface function that runs the model on the provided pil_image and
|
42 |
returns the exepected tuple to populate the gradio interface.
|
@@ -50,12 +46,22 @@ def interface_fn(model_segmentation: YOLO, pil_image: Image.Image) -> Tuple[Imag
|
|
50 |
raw_prediction_str (str): string representing the raw prediction from the
|
51 |
model.
|
52 |
"""
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
|
58 |
-
|
|
|
|
|
|
|
59 |
|
60 |
|
61 |
def examples(dir_examples: Path) -> list[Path]:
|
@@ -78,15 +84,23 @@ setup(
|
|
78 |
)
|
79 |
|
80 |
# Main Gradio interface
|
81 |
-
METRIC_LEARNING_MODEL_FILEPATH = Path(
|
82 |
-
|
83 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
DIR_EXAMPLES = Path("data/images/")
|
85 |
DEFAULT_IMAGE_INDEX = 0
|
86 |
|
87 |
with gr.Blocks() as demo:
|
88 |
-
|
89 |
-
|
|
|
|
|
90 |
image_filepaths = examples(dir_examples=DIR_EXAMPLES)
|
91 |
default_value_input = Image.open(image_filepaths[DEFAULT_IMAGE_INDEX])
|
92 |
input = gr.Image(
|
@@ -95,15 +109,19 @@ with gr.Blocks() as demo:
|
|
95 |
label="input image",
|
96 |
sources=["upload", "clipboard"],
|
97 |
)
|
98 |
-
|
|
|
99 |
output_raw = gr.Text(label="raw prediction")
|
100 |
|
101 |
-
fn = lambda pil_image: interface_fn(
|
|
|
|
|
|
|
102 |
gr.Interface(
|
103 |
title="ML pipeline for identifying bears from their faces 🐻",
|
104 |
fn=fn,
|
105 |
inputs=input,
|
106 |
-
outputs=[
|
107 |
examples=image_filepaths,
|
108 |
flagging_mode="never",
|
109 |
)
|
|
|
3 |
"""
|
4 |
|
5 |
from pathlib import Path
|
6 |
+
from typing import Any, Tuple
|
7 |
|
8 |
import gradio as gr
|
9 |
import numpy as np
|
10 |
from PIL import Image
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
from ultralytics import YOLO
|
12 |
|
13 |
from utils import (
|
14 |
bgr_to_rgb,
|
15 |
+
crop_from_yolov8,
|
16 |
get_best_device,
|
17 |
+
load_models,
|
18 |
+
resize,
|
19 |
+
run_pipeline,
|
20 |
+
setup,
|
21 |
+
square_pad,
|
22 |
)
|
23 |
|
24 |
|
|
|
27 |
Turn the yolo_prediction into a human friendly string.
|
28 |
"""
|
29 |
boxes = yolo_prediction.boxes
|
|
|
|
|
|
|
|
|
30 |
return f"""{len(boxes.conf)} bear detected! Trigger the bear repellent 🐻"""
|
31 |
|
32 |
|
33 |
+
def interface_fn(
|
34 |
+
loaded_models: dict[str, Any], pil_image: Image.Image
|
35 |
+
) -> Tuple[Image.Image, Image.Image, str]:
|
36 |
"""
|
37 |
Main interface function that runs the model on the provided pil_image and
|
38 |
returns the exepected tuple to populate the gradio interface.
|
|
|
46 |
raw_prediction_str (str): string representing the raw prediction from the
|
47 |
model.
|
48 |
"""
|
49 |
+
PARAM_SQUARE_DIM = 300
|
50 |
+
result = run_pipeline(
|
51 |
+
loaded_models=loaded_models,
|
52 |
+
pil_image=pil_image,
|
53 |
+
param_square_dim=PARAM_SQUARE_DIM,
|
54 |
+
param_k=5,
|
55 |
+
param_n_samples_per_individual=4,
|
56 |
+
knn_index_filepath=METRIC_LEARNING_KNN_INDEX_FILEPATH,
|
57 |
+
)
|
58 |
+
pil_image_segmented_head = result["stages"]["segmentation"]["output"]["pil_image"]
|
59 |
+
pil_image_cropped_head = result["stages"]["crop"]["output"]["pil_images"]["resized"]
|
60 |
|
61 |
+
# raw_prediction_str = prediction_to_str(yolov8_segmentation_prediction)
|
62 |
+
|
63 |
+
return (pil_image_segmented_head, pil_image_cropped_head, str(result))
|
64 |
+
return (pil_image_segmented_head, raw_prediction_str)
|
65 |
|
66 |
|
67 |
def examples(dir_examples: Path) -> list[Path]:
|
|
|
84 |
)
|
85 |
|
86 |
# Main Gradio interface
|
87 |
+
METRIC_LEARNING_MODEL_FILEPATH = Path(
|
88 |
+
"./data/06_models/pipeline/metriclearning/bearidentification/model.pt"
|
89 |
+
)
|
90 |
+
METRIC_LEARNING_KNN_INDEX_FILEPATH = Path(
|
91 |
+
"./data/06_models/pipeline/metriclearning/bearidentification/knn.index"
|
92 |
+
)
|
93 |
+
INSTANCE_SEGMENTATION_WEIGHTS_FILEPATH = Path(
|
94 |
+
"./data/06_models/pipeline/metriclearning/bearfacesegmentation/model.pt"
|
95 |
+
)
|
96 |
DIR_EXAMPLES = Path("data/images/")
|
97 |
DEFAULT_IMAGE_INDEX = 0
|
98 |
|
99 |
with gr.Blocks() as demo:
|
100 |
+
loaded_models = load_models(
|
101 |
+
filepath_metric_learning_weights=METRIC_LEARNING_MODEL_FILEPATH,
|
102 |
+
filepath_segmentation_weights=INSTANCE_SEGMENTATION_WEIGHTS_FILEPATH,
|
103 |
+
)
|
104 |
image_filepaths = examples(dir_examples=DIR_EXAMPLES)
|
105 |
default_value_input = Image.open(image_filepaths[DEFAULT_IMAGE_INDEX])
|
106 |
input = gr.Image(
|
|
|
109 |
label="input image",
|
110 |
sources=["upload", "clipboard"],
|
111 |
)
|
112 |
+
output_segmentation_image = gr.Image(type="pil", label="model prediction")
|
113 |
+
output_cropped_image = gr.Image(type="pil", label="cropped bear face")
|
114 |
output_raw = gr.Text(label="raw prediction")
|
115 |
|
116 |
+
fn = lambda pil_image: interface_fn(
|
117 |
+
loaded_models=loaded_models,
|
118 |
+
pil_image=pil_image,
|
119 |
+
)
|
120 |
gr.Interface(
|
121 |
title="ML pipeline for identifying bears from their faces 🐻",
|
122 |
fn=fn,
|
123 |
inputs=input,
|
124 |
+
outputs=[output_segmentation_image, output_cropped_image, output_raw],
|
125 |
examples=image_filepaths,
|
126 |
flagging_mode="never",
|
127 |
)
|
requirements.txt
CHANGED
@@ -1,4 +1,11 @@
|
|
|
|
|
|
|
|
1 |
gradio==5.4.*
|
2 |
pandas==2.2.*
|
|
|
|
|
3 |
torch==2.5.*
|
|
|
4 |
ultralytics==8.3.*
|
|
|
|
1 |
+
# faiss-cpu==1.7.4
|
2 |
+
faiss-cpu==1.9.*
|
3 |
+
|
4 |
gradio==5.4.*
|
5 |
pandas==2.2.*
|
6 |
+
# pytorch-metric-learning==2.4.1
|
7 |
+
pytorch-metric-learning==2.7.*
|
8 |
torch==2.5.*
|
9 |
+
tqdm==4.66.1
|
10 |
ultralytics==8.3.*
|
11 |
+
umap-learn==0.5.5
|
utils.py
CHANGED
@@ -1,15 +1,642 @@
|
|
|
|
|
|
|
|
|
|
|
|
1 |
from pathlib import Path
|
2 |
-
from typing import
|
3 |
|
4 |
-
import
|
5 |
import numpy as np
|
6 |
-
import os
|
7 |
import pandas as pd
|
8 |
-
import subprocess
|
9 |
-
import shutil
|
10 |
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
from ultralytics import YOLO
|
12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
def get_best_device() -> torch.device:
|
15 |
"""Returns the best torch device depending on the hardware it is running
|
@@ -51,14 +678,14 @@ def _setup_ml_pipeline(input_packaged_pipeline: Path, install_path: Path) -> Non
|
|
51 |
dirs_exist_ok=True,
|
52 |
)
|
53 |
|
|
|
54 |
def setup(input_packaged_pipeline: Path, install_path: Path) -> None:
|
55 |
"""
|
56 |
Full setup of the project.
|
57 |
"""
|
58 |
_setup_chips()
|
59 |
_setup_ml_pipeline(
|
60 |
-
input_packaged_pipeline=input_packaged_pipeline,
|
61 |
-
install_path=install_path
|
62 |
)
|
63 |
|
64 |
|
@@ -74,4 +701,233 @@ def load_segmentation_model(filepath_weights: Path) -> YOLO:
|
|
74 |
"""
|
75 |
Load the YOLO model given the filepath_weights.
|
76 |
"""
|
|
|
77 |
return YOLO(filepath_weights)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
import os
|
3 |
+
import shutil
|
4 |
+
import subprocess
|
5 |
+
from collections import Counter
|
6 |
from pathlib import Path
|
7 |
+
from typing import Any, Optional, OrderedDict
|
8 |
|
9 |
+
import cv2
|
10 |
import numpy as np
|
|
|
11 |
import pandas as pd
|
|
|
|
|
12 |
import torch
|
13 |
+
import torch.nn as nn
|
14 |
+
import torchvision
|
15 |
+
import torchvision.models as models
|
16 |
+
from PIL import Image
|
17 |
+
from pytorch_metric_learning.utils.common_functions import logging
|
18 |
+
from pytorch_metric_learning.utils.inference import InferenceModel
|
19 |
+
from torch.utils.data import DataLoader, Dataset
|
20 |
+
from torchvision import transforms
|
21 |
+
from torchvision.transforms import v2
|
22 |
from ultralytics import YOLO
|
23 |
|
24 |
+
# TODO: move metric learning functions into their own namespace
|
25 |
+
|
26 |
+
def sample_chips_from_bearid(
|
27 |
+
bear_id: str,
|
28 |
+
df_split: pd.DataFrame,
|
29 |
+
n: int = 4,
|
30 |
+
) -> list[Path]:
|
31 |
+
xs = df_split[df_split["bear_id"] == bear_id].sample(n=n)["path"].tolist()
|
32 |
+
return [Path(x) for x in xs]
|
33 |
+
|
34 |
+
|
35 |
+
def make_indexed_samples(
|
36 |
+
bear_ids: list[str],
|
37 |
+
df_split: pd.DataFrame,
|
38 |
+
n: int = 4,
|
39 |
+
) -> dict[str, list[Path]]:
|
40 |
+
return {
|
41 |
+
bear_id: sample_chips_from_bearid(bear_id=bear_id, df_split=df_split, n=n)
|
42 |
+
for bear_id in bear_ids
|
43 |
+
}
|
44 |
+
|
45 |
+
|
46 |
+
def _aux_get_k_nearest_individuals(
|
47 |
+
model: InferenceModel,
|
48 |
+
k_neighbors: int,
|
49 |
+
k_individuals: int,
|
50 |
+
query,
|
51 |
+
id_to_label: dict,
|
52 |
+
dataset: Dataset,
|
53 |
+
) -> dict:
|
54 |
+
"""Auxiliary helper function to get k nearest individuals.
|
55 |
+
|
56 |
+
Returns a dict with the following keys:
|
57 |
+
- k_neighbors: int - number of neighbors the KNN search extends to in order to find at least k_individuals
|
58 |
+
- dataset_indices: list[int] - list of indices to call get_item on the dataset
|
59 |
+
- dataset_labels: list[int] - labels of the dataset for the given dataset_indices
|
60 |
+
- dataset_images: list[torch.tensor] - chips of the bears
|
61 |
+
- distances: list[float] - distances from the query
|
62 |
+
|
63 |
+
Note: it can return more than k_individuals as it extends progressively the
|
64 |
+
KNN search to find at least k_individuals.
|
65 |
+
"""
|
66 |
+
assert k_individuals <= 20, f"Keep a small k_individuals: {k_individuals}"
|
67 |
+
|
68 |
+
distances, indices = model.get_nearest_neighbors(query=query, k=k_neighbors)
|
69 |
+
indices_on_cpu = indices.cpu()[0].tolist()
|
70 |
+
distances_on_cpu = distances.cpu()[0].tolist()
|
71 |
+
nearest_images, nearest_ids = list(zip(*[dataset[idx] for idx in indices_on_cpu]))
|
72 |
+
bearids = [id_to_label.get(nearest_id, "unknown") for nearest_id in nearest_ids]
|
73 |
+
counter = Counter(nearest_ids)
|
74 |
+
if len(counter.keys()) >= k_individuals:
|
75 |
+
return {
|
76 |
+
"k_neighbors": k_neighbors,
|
77 |
+
"dataset_indices": indices_on_cpu,
|
78 |
+
"dataset_labels": list(nearest_ids),
|
79 |
+
"dataset_images": list(nearest_images),
|
80 |
+
"bearids": bearids,
|
81 |
+
"distances": distances_on_cpu,
|
82 |
+
}
|
83 |
+
else:
|
84 |
+
new_k_neighbors = k_neighbors * 2
|
85 |
+
return _aux_get_k_nearest_individuals(
|
86 |
+
model,
|
87 |
+
k_neighbors=new_k_neighbors,
|
88 |
+
k_individuals=k_individuals,
|
89 |
+
query=query,
|
90 |
+
id_to_label=id_to_label,
|
91 |
+
dataset=dataset,
|
92 |
+
)
|
93 |
+
|
94 |
+
|
95 |
+
def _find_cutoff_index(k: int, dataset_labels: list[str]) -> Optional[int]:
|
96 |
+
"""Returns the index for dataset_labels that retrieves exactly k
|
97 |
+
individuals."""
|
98 |
+
if not dataset_labels:
|
99 |
+
return None
|
100 |
+
else:
|
101 |
+
selected_labels = set()
|
102 |
+
cutoff_index = -1
|
103 |
+
for idx, label in enumerate(dataset_labels):
|
104 |
+
if len(selected_labels) == k:
|
105 |
+
break
|
106 |
+
else:
|
107 |
+
selected_labels.add(label)
|
108 |
+
cutoff_index = idx + 1
|
109 |
+
return cutoff_index
|
110 |
+
|
111 |
+
|
112 |
+
def get_k_nearest_individuals(
|
113 |
+
model: InferenceModel,
|
114 |
+
k: int,
|
115 |
+
query,
|
116 |
+
id_to_label: dict,
|
117 |
+
dataset: Dataset,
|
118 |
+
) -> dict:
|
119 |
+
"""Returns the k nearest individuals using the inference model and a query.
|
120 |
+
|
121 |
+
A dict is returned with the following keys:
|
122 |
+
- dataset_indices: list[int] - list of indices to call get_item on the dataset
|
123 |
+
- dataset_labels: list[int] - labels of the dataset for the given dataset_indices
|
124 |
+
- dataset_images: list[torch.tensor] - chips of the bears
|
125 |
+
- distances: list[float] - distances from the query
|
126 |
+
"""
|
127 |
+
k_neighbors = k * 5
|
128 |
+
k_individuals = k
|
129 |
+
result = _aux_get_k_nearest_individuals(
|
130 |
+
model=model,
|
131 |
+
k_neighbors=k_neighbors,
|
132 |
+
k_individuals=k_individuals,
|
133 |
+
query=query,
|
134 |
+
id_to_label=id_to_label,
|
135 |
+
dataset=dataset,
|
136 |
+
)
|
137 |
+
cutoff_index = _find_cutoff_index(
|
138 |
+
k=k,
|
139 |
+
dataset_labels=result["dataset_labels"],
|
140 |
+
)
|
141 |
+
return {
|
142 |
+
"dataset_indices": result["dataset_indices"][:cutoff_index],
|
143 |
+
"dataset_labels": result["dataset_labels"][:cutoff_index],
|
144 |
+
"dataset_images": result["dataset_images"][:cutoff_index],
|
145 |
+
"bearids": result["bearids"][:cutoff_index],
|
146 |
+
"distances": result["distances"][:cutoff_index],
|
147 |
+
}
|
148 |
+
|
149 |
+
|
150 |
+
def index_by_bearid(k_nearest_individuals: dict) -> dict:
|
151 |
+
"""Returns a dict where keys are bearid labels (eg. 'bf_480') and the
|
152 |
+
values are list of the following dict shapes:
|
153 |
+
|
154 |
+
- dataset_label: int
|
155 |
+
- dataset_image: torch.tensor
|
156 |
+
- distance: float
|
157 |
+
- dataset_index: int
|
158 |
+
"""
|
159 |
+
result = {}
|
160 |
+
for dataset_label, dataset_image, distance, bearid, dataset_index in zip(
|
161 |
+
k_nearest_individuals["dataset_labels"],
|
162 |
+
k_nearest_individuals["dataset_images"],
|
163 |
+
k_nearest_individuals["distances"],
|
164 |
+
k_nearest_individuals["bearids"],
|
165 |
+
k_nearest_individuals["dataset_indices"],
|
166 |
+
):
|
167 |
+
row = {
|
168 |
+
"dataset_label": dataset_label,
|
169 |
+
"dataset_image": dataset_image,
|
170 |
+
"distance": distance,
|
171 |
+
"dataset_index": dataset_index,
|
172 |
+
}
|
173 |
+
if bearid not in result:
|
174 |
+
result[bearid] = [row]
|
175 |
+
else:
|
176 |
+
result[bearid].append(row)
|
177 |
+
return result
|
178 |
+
|
179 |
+
|
180 |
+
def prefix_keys_with(weights: OrderedDict, prefix: str = "module.") -> OrderedDict:
|
181 |
+
"""Returns the new weights where each key is prefixed with the provided
|
182 |
+
`prefix`.
|
183 |
+
|
184 |
+
Note: Useful when using DataParallel to account for the module. prefix key.
|
185 |
+
"""
|
186 |
+
weights_copy = weights.copy()
|
187 |
+
for k, v in weights.items():
|
188 |
+
weights_copy[f"{prefix}{k}"] = v
|
189 |
+
del weights_copy[k]
|
190 |
+
return weights_copy
|
191 |
+
|
192 |
+
|
193 |
+
def load_weights(
|
194 |
+
network: torch.nn.Module,
|
195 |
+
weights_filepath: Optional[Path] = None,
|
196 |
+
weights: Optional[OrderedDict] = None,
|
197 |
+
prefix: str = "",
|
198 |
+
) -> torch.nn.Module:
|
199 |
+
"""Loads the network weights.
|
200 |
+
|
201 |
+
Returns the network.
|
202 |
+
"""
|
203 |
+
if weights:
|
204 |
+
prefixed_weights = prefix_keys_with(weights, prefix=prefix)
|
205 |
+
network.load_state_dict(state_dict=prefixed_weights)
|
206 |
+
return network
|
207 |
+
elif weights_filepath:
|
208 |
+
assert weights_filepath.exists(), f"Invalid model_filepath {weights_filepath}"
|
209 |
+
weights = torch.load(weights_filepath)
|
210 |
+
prefixed_weights = prefix_keys_with(weights, prefix=prefix)
|
211 |
+
network.load_state_dict(state_dict=prefixed_weights)
|
212 |
+
return network
|
213 |
+
else:
|
214 |
+
raise Exception(f"Should provide at least weights or weights_filepath")
|
215 |
+
|
216 |
+
|
217 |
+
class MLP(nn.Module):
|
218 |
+
# layer_sizes[0] is the dimension of the input
|
219 |
+
# layer_sizes[-1] is the dimension of the output
|
220 |
+
def __init__(self, layer_sizes, final_relu=False):
|
221 |
+
super().__init__()
|
222 |
+
layer_list = []
|
223 |
+
layer_sizes = [int(x) for x in layer_sizes]
|
224 |
+
num_layers = len(layer_sizes) - 1
|
225 |
+
final_relu_layer = num_layers if final_relu else num_layers - 1
|
226 |
+
for i in range(len(layer_sizes) - 1):
|
227 |
+
input_size = layer_sizes[i]
|
228 |
+
curr_size = layer_sizes[i + 1]
|
229 |
+
if i <= final_relu_layer:
|
230 |
+
layer_list.append(nn.ReLU(inplace=False))
|
231 |
+
layer_list.append(nn.BatchNorm1d(input_size))
|
232 |
+
layer_list.append(nn.Linear(input_size, curr_size))
|
233 |
+
self.net = nn.Sequential(*layer_list)
|
234 |
+
self.last_linear = self.net[-1]
|
235 |
+
|
236 |
+
def forward(self, x):
|
237 |
+
return self.net(x)
|
238 |
+
|
239 |
+
|
240 |
+
def check_backbone(pretrained_backbone: str) -> None:
|
241 |
+
allowed_backbones = {
|
242 |
+
"resnet18",
|
243 |
+
"resnet50",
|
244 |
+
"convnext_tiny",
|
245 |
+
"convnext_base",
|
246 |
+
"convnext_large",
|
247 |
+
"efficientnet_v2_s",
|
248 |
+
# "squeezenet1_1",
|
249 |
+
"vit_b_16",
|
250 |
+
}
|
251 |
+
assert (
|
252 |
+
pretrained_backbone in allowed_backbones
|
253 |
+
), f"pretrained_backbone {pretrained_backbone} is not implemented, only {allowed_backbones}"
|
254 |
+
|
255 |
+
|
256 |
+
def make_trunk(pretrained_backbone: str = "resnet18") -> nn.Module:
|
257 |
+
"""Returns a nn.Module with pretrained weights using a given
|
258 |
+
pretrained_backbone.
|
259 |
+
|
260 |
+
Note: The currently available backbones are resnet18, resnet50,
|
261 |
+
convnext_tiny, convnext_bas, efficientnet_v2_s, squeezenet1_1, vit_b_16
|
262 |
+
"""
|
263 |
+
|
264 |
+
check_backbone(pretrained_backbone)
|
265 |
+
|
266 |
+
if pretrained_backbone == "resnet18":
|
267 |
+
return torchvision.models.resnet18(
|
268 |
+
weights=models.ResNet18_Weights.IMAGENET1K_V1
|
269 |
+
)
|
270 |
+
elif pretrained_backbone == "resnet50":
|
271 |
+
return torchvision.models.resnet50(
|
272 |
+
weights=models.ResNet50_Weights.IMAGENET1K_V1
|
273 |
+
)
|
274 |
+
elif pretrained_backbone == "convnext_tiny":
|
275 |
+
return torchvision.models.convnext_tiny(
|
276 |
+
weights=models.ConvNeXt_Tiny_Weights.IMAGENET1K_V1
|
277 |
+
)
|
278 |
+
elif pretrained_backbone == "convnext_base":
|
279 |
+
return torchvision.models.convnext_base(
|
280 |
+
weights=models.ConvNeXt_Base_Weights.IMAGENET1K_V1
|
281 |
+
)
|
282 |
+
elif pretrained_backbone == "convnext_large":
|
283 |
+
return torchvision.models.convnext_large(
|
284 |
+
weights=models.ConvNeXt_Large_Weights.IMAGENET1K_V1
|
285 |
+
)
|
286 |
+
elif pretrained_backbone == "efficientnet_v2_s":
|
287 |
+
return torchvision.models.efficientnet_v2_s(
|
288 |
+
weights=models.EfficientNet_V2_S_Weights.IMAGENET1K_V1
|
289 |
+
)
|
290 |
+
elif pretrained_backbone == "squeezenet1_1":
|
291 |
+
return torchvision.models.squeezenet1_1(
|
292 |
+
weights=models.SqueezeNet1_1_Weights.IMAGENET1K_V1
|
293 |
+
)
|
294 |
+
elif pretrained_backbone == "vit_b_16":
|
295 |
+
return torchvision.models.vit_b_16(
|
296 |
+
weights=models.ViT_B_16_Weights.IMAGENET1K_SWAG_E2E_V1
|
297 |
+
)
|
298 |
+
else:
|
299 |
+
raise Exception(f"Cannot make trunk with backbone {pretrained_backbone}")
|
300 |
+
|
301 |
+
|
302 |
+
def make_embedder(
|
303 |
+
pretrained_backbone: str,
|
304 |
+
trunk: nn.Module,
|
305 |
+
embedding_size: int,
|
306 |
+
hidden_layer_sizes: list[int],
|
307 |
+
) -> nn.Module:
|
308 |
+
check_backbone(pretrained_backbone)
|
309 |
+
|
310 |
+
if pretrained_backbone in ["resnet18", "resnet50"]:
|
311 |
+
trunk_output_size = trunk.fc.in_features
|
312 |
+
trunk.fc = nn.Identity()
|
313 |
+
return MLP([trunk_output_size, *hidden_layer_sizes, embedding_size])
|
314 |
+
if pretrained_backbone in ["convnext_tiny", "convnext_base", "convnext_large"]:
|
315 |
+
trunk_output_size = trunk.classifier[-1].in_features
|
316 |
+
trunk.classifier[-1] = nn.Identity()
|
317 |
+
return MLP([trunk_output_size, *hidden_layer_sizes, embedding_size])
|
318 |
+
elif pretrained_backbone == "efficientnet_v2_s":
|
319 |
+
trunk_output_size = trunk.classifier[-1].in_features
|
320 |
+
trunk.classifier[-1] = nn.Identity()
|
321 |
+
return MLP([trunk_output_size, *hidden_layer_sizes, embedding_size])
|
322 |
+
elif pretrained_backbone == "vit_b_16":
|
323 |
+
trunk_output_size = trunk.heads.head.in_features
|
324 |
+
trunk.heads.head = nn.Identity()
|
325 |
+
return MLP([trunk_output_size, *hidden_layer_sizes, embedding_size])
|
326 |
+
else:
|
327 |
+
raise Exception(f"{pretrained_backbone} embedder not implemented yet")
|
328 |
+
|
329 |
+
|
330 |
+
def make_model_dict(
|
331 |
+
device: torch.device,
|
332 |
+
pretrained_backbone: str = "resnet18",
|
333 |
+
embedding_size: int = 128,
|
334 |
+
hidden_layer_sizes: list[int] = [1024],
|
335 |
+
) -> dict[str, nn.Module]:
|
336 |
+
"""
|
337 |
+
Returns a dict with the following keys:
|
338 |
+
- embedder: nn.Module - embedder model, usually an MLP.
|
339 |
+
- trunk: nn.Module - the backbone model, usually a pretrained model (like a ResNet).
|
340 |
+
"""
|
341 |
+
|
342 |
+
trunk = make_trunk(pretrained_backbone=pretrained_backbone)
|
343 |
+
embedder = make_embedder(
|
344 |
+
pretrained_backbone=pretrained_backbone,
|
345 |
+
embedding_size=embedding_size,
|
346 |
+
hidden_layer_sizes=hidden_layer_sizes,
|
347 |
+
trunk=trunk,
|
348 |
+
)
|
349 |
+
|
350 |
+
trunk = torch.nn.DataParallel(trunk.to(device))
|
351 |
+
embedder = torch.nn.DataParallel(embedder.to(device))
|
352 |
+
|
353 |
+
return {
|
354 |
+
"trunk": trunk,
|
355 |
+
"embedder": embedder,
|
356 |
+
}
|
357 |
+
|
358 |
+
|
359 |
+
class BearDataset(Dataset):
|
360 |
+
def __init__(self, dataframe, id_mapping, transform=None):
|
361 |
+
self.dataframe = dataframe
|
362 |
+
self.id_mapping = id_mapping
|
363 |
+
self.transform = transform
|
364 |
+
|
365 |
+
def __len__(self):
|
366 |
+
return len(self.dataframe)
|
367 |
+
|
368 |
+
def __getitem__(self, idx):
|
369 |
+
sample = self.dataframe.iloc[idx]
|
370 |
+
image_path = sample.path
|
371 |
+
bear_id = sample.bear_id
|
372 |
+
|
373 |
+
id_value = self.id_mapping.loc[self.id_mapping["label"] == bear_id, "id"].iloc[
|
374 |
+
0
|
375 |
+
]
|
376 |
+
|
377 |
+
image = Image.open(image_path)
|
378 |
+
if self.transform:
|
379 |
+
image = self.transform(image)
|
380 |
+
|
381 |
+
return image, id_value
|
382 |
+
|
383 |
+
|
384 |
+
def make_dataloaders(
|
385 |
+
batch_size: int,
|
386 |
+
df_split: pd.DataFrame,
|
387 |
+
transforms: dict,
|
388 |
+
) -> dict:
|
389 |
+
"""Returns a dict with top level keys in {dataset and loader}.
|
390 |
+
|
391 |
+
Each returns a dict with the train, val and test objects associated.
|
392 |
+
"""
|
393 |
+
|
394 |
+
df_train = df_split[df_split["split"] == "train"]
|
395 |
+
df_val = df_split[df_split["split"] == "val"]
|
396 |
+
df_test = df_split[df_split["split"] == "test"]
|
397 |
+
id_mapping = make_id_mapping(df=df_split)
|
398 |
+
|
399 |
+
train_dataset = BearDataset(
|
400 |
+
df_train,
|
401 |
+
id_mapping,
|
402 |
+
transform=transforms["train"],
|
403 |
+
)
|
404 |
+
train_loader = DataLoader(
|
405 |
+
train_dataset,
|
406 |
+
batch_size=batch_size,
|
407 |
+
shuffle=True,
|
408 |
+
drop_last=True,
|
409 |
+
)
|
410 |
+
|
411 |
+
val_dataset = BearDataset(
|
412 |
+
df_val,
|
413 |
+
id_mapping,
|
414 |
+
transform=transforms["val"],
|
415 |
+
)
|
416 |
+
val_loader = DataLoader(
|
417 |
+
val_dataset,
|
418 |
+
batch_size=batch_size,
|
419 |
+
)
|
420 |
+
|
421 |
+
test_dataset = BearDataset(
|
422 |
+
df_test,
|
423 |
+
id_mapping,
|
424 |
+
transform=transforms["test"],
|
425 |
+
)
|
426 |
+
test_loader = DataLoader(
|
427 |
+
test_dataset,
|
428 |
+
batch_size=batch_size,
|
429 |
+
)
|
430 |
+
|
431 |
+
viz_dataset = BearDataset(
|
432 |
+
df_train,
|
433 |
+
id_mapping,
|
434 |
+
transform=transforms["viz"],
|
435 |
+
)
|
436 |
+
viz_loader = DataLoader(
|
437 |
+
viz_dataset,
|
438 |
+
batch_size=batch_size,
|
439 |
+
shuffle=True,
|
440 |
+
drop_last=True,
|
441 |
+
)
|
442 |
+
full_dataset = BearDataset(
|
443 |
+
df_split,
|
444 |
+
id_mapping,
|
445 |
+
transform=transforms["val"],
|
446 |
+
)
|
447 |
+
|
448 |
+
return {
|
449 |
+
"dataset": {
|
450 |
+
"viz": viz_dataset,
|
451 |
+
"train": train_dataset,
|
452 |
+
"val": val_dataset,
|
453 |
+
"test": test_dataset,
|
454 |
+
"full": full_dataset,
|
455 |
+
},
|
456 |
+
"loader": {
|
457 |
+
"viz": viz_loader,
|
458 |
+
"train": train_loader,
|
459 |
+
"val": val_loader,
|
460 |
+
"test": test_loader,
|
461 |
+
},
|
462 |
+
}
|
463 |
+
|
464 |
+
|
465 |
+
def make_id_mapping(df: pd.DataFrame) -> pd.DataFrame:
|
466 |
+
"""Returns a dataframe that maps a bear label (eg.
|
467 |
+
|
468 |
+
bf_755) to a unique natural number (eg. 0). The dataFrame contains
|
469 |
+
two columns, namely id and label.
|
470 |
+
"""
|
471 |
+
return pd.DataFrame(
|
472 |
+
list(enumerate(df["bear_id"].unique())), columns=["id", "label"]
|
473 |
+
)
|
474 |
+
|
475 |
+
|
476 |
+
def filter_none(xs: list) -> list:
|
477 |
+
return [x for x in xs if x is not None]
|
478 |
+
|
479 |
+
|
480 |
+
def get_dtype(dtype_str: str) -> torch.dtype:
|
481 |
+
if dtype_str == "float32":
|
482 |
+
return torch.float32
|
483 |
+
elif dtype_str == "int64":
|
484 |
+
return torch.int64
|
485 |
+
else:
|
486 |
+
logging.warning(
|
487 |
+
f"dtype_str {dtype_str} not implemented, returning default value"
|
488 |
+
)
|
489 |
+
return torch.float32
|
490 |
+
|
491 |
+
|
492 |
+
def get_transforms(
|
493 |
+
data_augmentation: dict = {},
|
494 |
+
trunk_preprocessing: dict = {},
|
495 |
+
) -> dict:
|
496 |
+
"""Returns a dict containing the transforms for the following splits:
|
497 |
+
train, val, test and viz (the latter is used for batch visualization).
|
498 |
+
"""
|
499 |
+
logging.info(f"data_augmentation config: {data_augmentation}")
|
500 |
+
logging.info(f"trunk preprocessing config: {trunk_preprocessing}")
|
501 |
+
|
502 |
+
DEFAULT_CROP_SIZE = 224
|
503 |
+
crop_size = (
|
504 |
+
trunk_preprocessing.get("crop_size", DEFAULT_CROP_SIZE),
|
505 |
+
trunk_preprocessing.get("crop_size", DEFAULT_CROP_SIZE),
|
506 |
+
)
|
507 |
+
|
508 |
+
# transform to persist a batch of data as an artefact
|
509 |
+
transform_viz = transforms.Compose(
|
510 |
+
[
|
511 |
+
transforms.Resize(crop_size),
|
512 |
+
transforms.ToTensor(),
|
513 |
+
]
|
514 |
+
)
|
515 |
+
|
516 |
+
mdtype: Optional[torch.dtype] = (
|
517 |
+
get_dtype(trunk_preprocessing["values"].get("dtype", None))
|
518 |
+
if trunk_preprocessing.get("values", None)
|
519 |
+
else None
|
520 |
+
)
|
521 |
+
mscale: Optional[bool] = (
|
522 |
+
trunk_preprocessing["values"].get("scale", None)
|
523 |
+
if trunk_preprocessing.get("values", None)
|
524 |
+
else None
|
525 |
+
)
|
526 |
+
|
527 |
+
mmean: Optional[list[float]] = (
|
528 |
+
trunk_preprocessing["normalization"].get("mean", None)
|
529 |
+
if trunk_preprocessing.get("normalization", None)
|
530 |
+
else None
|
531 |
+
)
|
532 |
+
|
533 |
+
mstd: Optional[list[float]] = (
|
534 |
+
trunk_preprocessing["normalization"].get("std", None)
|
535 |
+
if trunk_preprocessing.get("normalization", None)
|
536 |
+
else None
|
537 |
+
)
|
538 |
+
|
539 |
+
hue = (
|
540 |
+
data_augmentation["colorjitter"].get("hue", 0)
|
541 |
+
if data_augmentation.get("colorjitter", 0)
|
542 |
+
else 0
|
543 |
+
)
|
544 |
+
saturation = (
|
545 |
+
data_augmentation["colorjitter"].get("saturation", 0)
|
546 |
+
if data_augmentation.get("colorjitter", 0)
|
547 |
+
else 0
|
548 |
+
)
|
549 |
+
degrees = (
|
550 |
+
data_augmentation["rotation"].get("degrees", 0)
|
551 |
+
if data_augmentation.get("rotation", 0)
|
552 |
+
else 0
|
553 |
+
)
|
554 |
+
|
555 |
+
transformations_plain = [
|
556 |
+
transforms.Resize(crop_size),
|
557 |
+
transforms.ToTensor(),
|
558 |
+
v2.ToDtype(dtype=mdtype, scale=mscale) if mdtype and mscale else None,
|
559 |
+
transforms.Normalize(mean=mmean, std=mstd) if mmean and mstd else None,
|
560 |
+
]
|
561 |
+
|
562 |
+
transformations_train = [
|
563 |
+
transforms.Resize(crop_size),
|
564 |
+
(
|
565 |
+
transforms.ColorJitter(
|
566 |
+
hue=hue,
|
567 |
+
saturation=saturation,
|
568 |
+
)
|
569 |
+
if data_augmentation.get("colorjitter", None)
|
570 |
+
else None
|
571 |
+
), # Taken from Dolphin ID
|
572 |
+
(
|
573 |
+
v2.RandomRotation(degrees=degrees)
|
574 |
+
if data_augmentation.get("rotation", None)
|
575 |
+
else None
|
576 |
+
), # Taken from Dolphin ID
|
577 |
+
transforms.ToTensor(),
|
578 |
+
v2.ToDtype(dtype=mdtype, scale=mscale) if mdtype and mscale else None,
|
579 |
+
transforms.Normalize(mean=mmean, std=mstd) if mmean and mstd else None,
|
580 |
+
]
|
581 |
+
|
582 |
+
# Filtering out None transforms
|
583 |
+
transform_plain = transforms.Compose(filter_none(transformations_plain))
|
584 |
+
transform_train = transforms.Compose(filter_none(transformations_train))
|
585 |
+
|
586 |
+
return {
|
587 |
+
"viz": transform_viz,
|
588 |
+
"train": transform_train,
|
589 |
+
"val": transform_plain,
|
590 |
+
"test": transform_plain,
|
591 |
+
}
|
592 |
+
|
593 |
+
|
594 |
+
def resize(
|
595 |
+
mask: np.ndarray,
|
596 |
+
dim: tuple[int, int],
|
597 |
+
interpolation: int = cv2.INTER_LINEAR,
|
598 |
+
):
|
599 |
+
"""Resize the mask to the provided `dim` using the interpolation method.
|
600 |
+
|
601 |
+
`dim`: (W, H) format
|
602 |
+
"""
|
603 |
+
return cv2.resize(mask, dsize=dim, interpolation=interpolation)
|
604 |
+
|
605 |
+
|
606 |
+
def crop_from_yolov8(prediction_yolov8) -> np.ndarray:
|
607 |
+
"""Given a yolov8 prediction, returns an image containing the cropped bear
|
608 |
+
head."""
|
609 |
+
H, W = prediction_yolov8.orig_shape
|
610 |
+
predictions_masks = prediction_yolov8.masks.data.to("cpu").numpy()
|
611 |
+
idx = np.argmax(prediction_yolov8.boxes.conf.to("cpu").numpy())
|
612 |
+
predictions_mask = predictions_masks[idx]
|
613 |
+
prediction_resized = resize(predictions_mask, dim=(W, H))
|
614 |
+
masked_image = prediction_yolov8.orig_img.copy()
|
615 |
+
black_pixel = [0, 0, 0]
|
616 |
+
masked_image[~prediction_resized.astype(bool)] = black_pixel
|
617 |
+
x0, y0, x1, y1 = prediction_yolov8.boxes[idx].xyxy[0].to("cpu").numpy()
|
618 |
+
return masked_image[int(y0) : int(y1), int(x0) : int(x1)]
|
619 |
+
|
620 |
+
|
621 |
+
def square_pad(img: np.ndarray):
|
622 |
+
"""Returns an image with dimension max(W, H) x max(W, H), padded with black
|
623 |
+
pixels."""
|
624 |
+
H, W, _ = img.shape
|
625 |
+
K = max(H, W)
|
626 |
+
top = (K - H) // 2
|
627 |
+
bottom = (K - H) // 2
|
628 |
+
left = (K - W) // 2
|
629 |
+
right = (K - W) // 2
|
630 |
+
|
631 |
+
return cv2.copyMakeBorder(
|
632 |
+
img.copy(),
|
633 |
+
top,
|
634 |
+
bottom,
|
635 |
+
left,
|
636 |
+
right,
|
637 |
+
cv2.BORDER_CONSTANT,
|
638 |
+
)
|
639 |
+
|
640 |
|
641 |
def get_best_device() -> torch.device:
|
642 |
"""Returns the best torch device depending on the hardware it is running
|
|
|
678 |
dirs_exist_ok=True,
|
679 |
)
|
680 |
|
681 |
+
|
682 |
def setup(input_packaged_pipeline: Path, install_path: Path) -> None:
|
683 |
"""
|
684 |
Full setup of the project.
|
685 |
"""
|
686 |
_setup_chips()
|
687 |
_setup_ml_pipeline(
|
688 |
+
input_packaged_pipeline=input_packaged_pipeline, install_path=install_path
|
|
|
689 |
)
|
690 |
|
691 |
|
|
|
701 |
"""
|
702 |
Load the YOLO model given the filepath_weights.
|
703 |
"""
|
704 |
+
assert filepath_weights.exists()
|
705 |
return YOLO(filepath_weights)
|
706 |
+
|
707 |
+
|
708 |
+
def load_metric_learning_model(device: torch.device, filepath_weights: Path) -> Any:
|
709 |
+
assert filepath_weights.exists()
|
710 |
+
return torch.load(filepath_weights, map_location=device)
|
711 |
+
|
712 |
+
|
713 |
+
def load_models(
|
714 |
+
filepath_segmentation_weights: Path,
|
715 |
+
filepath_metric_learning_weights: Path,
|
716 |
+
) -> dict[str, Any]:
|
717 |
+
assert filepath_segmentation_weights.exists()
|
718 |
+
assert filepath_metric_learning_weights.exists()
|
719 |
+
|
720 |
+
device = get_best_device()
|
721 |
+
model_segmentation = load_segmentation_model(filepath_segmentation_weights)
|
722 |
+
model_metric_learning = load_metric_learning_model(
|
723 |
+
device=device,
|
724 |
+
filepath_weights=filepath_metric_learning_weights,
|
725 |
+
)
|
726 |
+
|
727 |
+
return {
|
728 |
+
"segmentation": model_segmentation,
|
729 |
+
"metric_learning": model_metric_learning,
|
730 |
+
}
|
731 |
+
|
732 |
+
|
733 |
+
def run_segmentation(model: YOLO, pil_image: Image.Image) -> dict[str, Any]:
|
734 |
+
predictions = model(pil_image)
|
735 |
+
if len(predictions) > 0:
|
736 |
+
prediction = predictions[0]
|
737 |
+
pil_image_with_prediction = Image.fromarray(bgr_to_rgb(prediction.plot()))
|
738 |
+
return {"pil_image": pil_image_with_prediction, "prediction": prediction}
|
739 |
+
else:
|
740 |
+
return {}
|
741 |
+
|
742 |
+
|
743 |
+
def run_crop(square_dim: int, yolo_prediction) -> dict[str, Any]:
|
744 |
+
"""
|
745 |
+
Run the crop stage on the yolo_prediction.
|
746 |
+
|
747 |
+
It resizes a square bear face based on `square_dim`.
|
748 |
+
"""
|
749 |
+
cropped_bear_head = crop_from_yolov8(prediction_yolov8=yolo_prediction)
|
750 |
+
padded_cropped_head = square_pad(cropped_bear_head)
|
751 |
+
resized_padded_cropped_head = resize(
|
752 |
+
padded_cropped_head, dim=(square_dim, square_dim)
|
753 |
+
)
|
754 |
+
pil_image_cropped_bear_head = Image.fromarray(bgr_to_rgb(cropped_bear_head))
|
755 |
+
pil_image_padded_cropped_head = Image.fromarray(
|
756 |
+
bgr_to_rgb(resized_padded_cropped_head)
|
757 |
+
)
|
758 |
+
pil_image_resized_padded_cropped_head = Image.fromarray(
|
759 |
+
bgr_to_rgb(resized_padded_cropped_head)
|
760 |
+
)
|
761 |
+
return {
|
762 |
+
"pil_images": {
|
763 |
+
"cropped": pil_image_cropped_bear_head,
|
764 |
+
"padded": pil_image_padded_cropped_head,
|
765 |
+
"resized": pil_image_resized_padded_cropped_head,
|
766 |
+
}
|
767 |
+
}
|
768 |
+
|
769 |
+
|
770 |
+
def make_id_to_label(id_mapping: pd.DataFrame) -> dict[int, str]:
|
771 |
+
return id_mapping.set_index("id")["label"].to_dict()
|
772 |
+
|
773 |
+
|
774 |
+
def run_identification(
|
775 |
+
loaded_model,
|
776 |
+
k: int,
|
777 |
+
knn_index_filepath: Path,
|
778 |
+
pil_image_chip: Image.Image,
|
779 |
+
n_samples_per_individual: int = 5,
|
780 |
+
) -> dict[str, Any]:
|
781 |
+
"""
|
782 |
+
Run the identification stage.
|
783 |
+
"""
|
784 |
+
device = get_best_device()
|
785 |
+
args = loaded_model["args"]
|
786 |
+
config = args.copy()
|
787 |
+
del config["run"]
|
788 |
+
|
789 |
+
transforms = get_transforms(
|
790 |
+
data_augmentation=config.get("data_augmentation", {}),
|
791 |
+
trunk_preprocessing=config["model"]["trunk"].get("preprocessing", {}),
|
792 |
+
)
|
793 |
+
|
794 |
+
logging.info("loading the df_split")
|
795 |
+
df_split = pd.DataFrame(loaded_model["data_split"])
|
796 |
+
df_split.info()
|
797 |
+
|
798 |
+
id_mapping = make_id_mapping(df=df_split)
|
799 |
+
|
800 |
+
dataloaders = make_dataloaders(
|
801 |
+
batch_size=config["batch_size"],
|
802 |
+
df_split=df_split,
|
803 |
+
transforms=transforms,
|
804 |
+
)
|
805 |
+
|
806 |
+
model_dict = make_model_dict(
|
807 |
+
device=device,
|
808 |
+
pretrained_backbone=config["model"]["trunk"]["backbone"],
|
809 |
+
embedding_size=config["model"]["embedder"]["embedding_size"],
|
810 |
+
hidden_layer_sizes=config["model"]["embedder"]["hidden_layer_sizes"],
|
811 |
+
)
|
812 |
+
|
813 |
+
trunk_weights = loaded_model["trunk"]
|
814 |
+
trunk = model_dict["trunk"]
|
815 |
+
trunk = load_weights(
|
816 |
+
network=trunk,
|
817 |
+
weights=trunk_weights,
|
818 |
+
prefix="module.",
|
819 |
+
)
|
820 |
+
|
821 |
+
embedder_weights = loaded_model["embedder"]
|
822 |
+
embedder = model_dict["embedder"]
|
823 |
+
embedder = load_weights(
|
824 |
+
network=embedder,
|
825 |
+
weights=embedder_weights,
|
826 |
+
prefix="module.",
|
827 |
+
)
|
828 |
+
|
829 |
+
model = InferenceModel(
|
830 |
+
trunk=trunk,
|
831 |
+
embedder=embedder,
|
832 |
+
)
|
833 |
+
|
834 |
+
dataset_full = dataloaders["dataset"]["full"]
|
835 |
+
|
836 |
+
assert (
|
837 |
+
knn_index_filepath.exists()
|
838 |
+
), f"knn_index_filepath invalid filepath: {knn_index_filepath}"
|
839 |
+
model.load_knn_func(filename=str(knn_index_filepath))
|
840 |
+
|
841 |
+
image = pil_image_chip
|
842 |
+
transform_test = transforms["test"]
|
843 |
+
model_input = transform_test(image)
|
844 |
+
query = model_input.unsqueeze(0)
|
845 |
+
id_to_label = make_id_to_label(id_mapping=id_mapping)
|
846 |
+
|
847 |
+
k_nearest_individuals = get_k_nearest_individuals(
|
848 |
+
model=model,
|
849 |
+
k=k,
|
850 |
+
query=query,
|
851 |
+
id_to_label=id_to_label,
|
852 |
+
dataset=dataset_full,
|
853 |
+
)
|
854 |
+
indexed_k_nearest_individuals = index_by_bearid(
|
855 |
+
k_nearest_individuals=k_nearest_individuals
|
856 |
+
)
|
857 |
+
bear_ids = list(indexed_k_nearest_individuals.keys())
|
858 |
+
indexed_samples = make_indexed_samples(
|
859 |
+
bear_ids=bear_ids,
|
860 |
+
df_split=df_split,
|
861 |
+
n=n_samples_per_individual,
|
862 |
+
)
|
863 |
+
return {
|
864 |
+
"bear_ids": bear_ids,
|
865 |
+
"k_nearest_individuals": k_nearest_individuals,
|
866 |
+
"indexed_k_nearest_individuals": indexed_k_nearest_individuals,
|
867 |
+
"indexed_samples": indexed_samples,
|
868 |
+
}
|
869 |
+
|
870 |
+
|
871 |
+
def run_pipeline(
|
872 |
+
loaded_models: dict[str, Any],
|
873 |
+
param_square_dim: int,
|
874 |
+
param_k: int,
|
875 |
+
param_n_samples_per_individual: int,
|
876 |
+
knn_index_filepath: Path,
|
877 |
+
pil_image: Image.Image,
|
878 |
+
) -> dict[str, Any]:
|
879 |
+
"""
|
880 |
+
Run the full pipeline on pil_image, using `pil_image` as an input.
|
881 |
+
|
882 |
+
Args:
|
883 |
+
loaded_models (dict[str, Any]): dict of all the loaded models needed to
|
884 |
+
run the pipeline. Usually loaded via the `load_model` function.
|
885 |
+
param_square_dim (int): size of the square chip.
|
886 |
+
param_k (int): how many closest individuals to query to compare it to
|
887 |
+
the chip
|
888 |
+
param_n_samples_per_individual (int): How many chips from each
|
889 |
+
individual do we want to compare it to?
|
890 |
+
knn_index_filepath (Path): filepath to the KNN index of the embedded
|
891 |
+
chips.
|
892 |
+
pil_image (PIL): Main input image of the pipeline
|
893 |
+
"""
|
894 |
+
results_segmentation = run_segmentation(
|
895 |
+
model=loaded_models["segmentation"], pil_image=pil_image
|
896 |
+
)
|
897 |
+
results_crop = run_crop(
|
898 |
+
square_dim=param_square_dim,
|
899 |
+
yolo_prediction=results_segmentation["prediction"],
|
900 |
+
)
|
901 |
+
pil_image_chip = results_crop["pil_images"]["resized"]
|
902 |
+
results_identification = run_identification(
|
903 |
+
loaded_model=loaded_models["metric_learning"],
|
904 |
+
k=param_k,
|
905 |
+
knn_index_filepath=knn_index_filepath,
|
906 |
+
pil_image_chip=pil_image_chip,
|
907 |
+
n_samples_per_individual=5,
|
908 |
+
)
|
909 |
+
return {
|
910 |
+
"order": ["segmentation", "crop", "identification"],
|
911 |
+
"stages": {
|
912 |
+
"segmentation": {
|
913 |
+
"input": {"pil_image": pil_image},
|
914 |
+
"output": results_segmentation,
|
915 |
+
},
|
916 |
+
"crop": {
|
917 |
+
"input": {
|
918 |
+
"square_dim": param_square_dim,
|
919 |
+
"yolo_prediction": results_segmentation["prediction"],
|
920 |
+
},
|
921 |
+
"output": results_crop,
|
922 |
+
},
|
923 |
+
"identification": {
|
924 |
+
"input": {
|
925 |
+
"k": param_k,
|
926 |
+
"n_samples_per_individual": param_n_samples_per_individual,
|
927 |
+
"knn_index_filepath": knn_index_filepath,
|
928 |
+
"pil_image_chip": pil_image_chip,
|
929 |
+
},
|
930 |
+
"output": results_identification,
|
931 |
+
},
|
932 |
+
},
|
933 |
+
}
|