import os
import time
import uuid
from typing import List, Tuple, Optional, Dict, Union
import google.generativeai as genai
import gradio as gr
from PIL import Image
from langchain.chat_models import ChatOpenAI
from langchain.prompts import ChatPromptTemplate
from langchain.chains import LLMChain, SequentialChain
# LangChain function for company analysis
def company_analysis(api_key: str, company_name: str) -> dict:
os.environ['OPENAI_API_KEY'] = api_key # Set the OpenAI API key as an environment variable
llm = ChatOpenAI()
'''
# Identify the email's language
template1 = "Return the language this email is written in:\n{email}.\nONLY return the language it was written in."
prompt1 = ChatPromptTemplate.from_template(template1)
chain_1 = LLMChain(llm=llm, prompt=prompt1, output_key="language")
# Translate the email to English
template2 = "Translate this email from {language} to English. Here is the email:\n" + email
prompt2 = ChatPromptTemplate.from_template(template2)
chain_2 = LLMChain(llm=llm, prompt=prompt2, output_key="translated_email")
# Provide a summary in English
template3 = "Create a short summary of this email:\n{translated_email}"
prompt3 = ChatPromptTemplate.from_template(template3)
chain_3 = LLMChain(llm=llm, prompt=prompt3, output_key="summary")
# Provide a reply in English
template4 = "Reply to the sender of the email giving a plausible reply based on the {summary} and a promise to address issues"
prompt4 = ChatPromptTemplate.from_template(template4)
chain_4 = LLMChain(llm=llm, prompt=prompt4, output_key="reply")
# Provide a translation back to the original language
template5 = "Translate the {reply} back to the original {language} of the email."
prompt5 = ChatPromptTemplate.from_template(template5)
chain_5 = LLMChain(llm=llm, prompt=prompt5, output_key="translated_reply")
seq_chain = SequentialChain(chains=[chain_1, chain_2, chain_3, chain_4, chain_5],
input_variables=['email'],
output_variables=['language', 'translated_email', 'summary', 'reply', 'translated_reply'],
verbose=True)
'''
return seq_chain(email)
print("google-generativeai:", genai.__version__)
GOOGLE_API_KEY = os.environ.get("GOOGLE_API_KEY")
TITLE1 = """
Company Analysis
"""
TITLE2 = """Investment Strategy
"""
TITLE3 = """Profit Prophet
"""
SUBTITLE = """Strategy Agent built with Gemini Pro and Gemini Pro Vision API
"""
GETKEY = """
"""
AVATAR_IMAGES = (
None,
"https://media.roboflow.com/spaces/gemini-icon.png"
)
movie_script_analysis = ""
IMAGE_CACHE_DIRECTORY = "/tmp"
IMAGE_WIDTH = 512
CHAT_HISTORY = List[Tuple[Optional[Union[Tuple[str], str]], Optional[str]]]
def preprocess_stop_sequences(stop_sequences: str) -> Optional[List[str]]:
if not stop_sequences:
return None
return [sequence.strip() for sequence in stop_sequences.split(",")]
def preprocess_image(image: Image.Image) -> Optional[Image.Image]:
image_height = int(image.height * IMAGE_WIDTH / image.width)
return image.resize((IMAGE_WIDTH, image_height))
def cache_pil_image(image: Image.Image) -> str:
image_filename = f"{uuid.uuid4()}.jpeg"
os.makedirs(IMAGE_CACHE_DIRECTORY, exist_ok=True)
image_path = os.path.join(IMAGE_CACHE_DIRECTORY, image_filename)
image.save(image_path, "JPEG")
return image_path
def preprocess_chat_history(
history: CHAT_HISTORY
) -> List[Dict[str, Union[str, List[str]]]]:
messages = []
for user_message, model_message in history:
if isinstance(user_message, tuple):
pass
elif user_message is not None:
messages.append({'role': 'user', 'parts': [user_message]})
if model_message is not None:
messages.append({'role': 'model', 'parts': [model_message]})
return messages
def upload(files: Optional[List[str]], chatbot: CHAT_HISTORY) -> CHAT_HISTORY:
for file in files:
image = Image.open(file).convert('RGB')
image = preprocess_image(image)
image_path = cache_pil_image(image)
chatbot.append(((image_path,), None))
return chatbot
def user(text_prompt: str, chatbot: CHAT_HISTORY):
if text_prompt:
chatbot.append((text_prompt, None))
return "", chatbot
def bot(
google_key: str,
files: Optional[List[str]],
temperature: float,
max_output_tokens: int,
stop_sequences: str,
top_k: int,
top_p: float,
chatbot: CHAT_HISTORY
):
if len(chatbot) == 0:
return chatbot
google_key = google_key if google_key else GOOGLE_API_KEY
if not google_key:
raise ValueError(
"GOOGLE_API_KEY is not set. "
"Please follow the instructions in the README to set it up.")
genai.configure(api_key=google_key)
generation_config = genai.types.GenerationConfig(
temperature=temperature,
max_output_tokens=max_output_tokens,
stop_sequences=preprocess_stop_sequences(stop_sequences=stop_sequences),
top_k=top_k,
top_p=top_p)
if files:
text_prompt = [chatbot[-1][0]] \
if chatbot[-1][0] and isinstance(chatbot[-1][0], str) \
else []
image_prompt = [Image.open(file).convert('RGB') for file in files]
model = genai.GenerativeModel('gemini-pro-vision')
response = model.generate_content(
text_prompt + image_prompt,
stream=True,
generation_config=generation_config)
else:
messages = preprocess_chat_history(chatbot)
model = genai.GenerativeModel('gemini-pro')
response = model.generate_content(
messages,
stream=True,
generation_config=generation_config)
# streaming effect
chatbot[-1][1] = ""
for chunk in response:
for i in range(0, len(chunk.text), 10):
section = chunk.text[i:i + 10]
chatbot[-1][1] += section
time.sleep(0.01)
yield chatbot
google_key_component = gr.Textbox(
label="GOOGLE API KEY",
value="",
type="password",
placeholder="...",
info="You have to provide your own GOOGLE_API_KEY for this app to function properly",
visible=GOOGLE_API_KEY is None
)
chatbot_component = gr.Chatbot(
label='Gemini Pro Vision',
bubble_full_width=False,
avatar_images=AVATAR_IMAGES,
scale=2,
height=400
)
text_prompt_component = gr.Textbox(value=movie_script_analysis,
show_label=False, autofocus=True, scale=8, lines=8
)
upload_button_component = gr.UploadButton(
label="Upload Images", file_count="multiple", file_types=["image"], scale=1
)
run_button_component = gr.Button(value="Run", variant="primary", scale=1)
run_button_analysis = gr.Button(value="Run", variant="primary", scale=1)
temperature_component = gr.Slider(
minimum=0,
maximum=1.0,
value=0.4,
step=0.05,
label="Temperature",
info=(
"Temperature controls the degree of randomness in token selection. Lower "
"temperatures are good for prompts that expect a true or correct response, "
"while higher temperatures can lead to more diverse or unexpected results. "
))
max_output_tokens_component = gr.Slider(
minimum=1,
maximum=2048,
value=1024,
step=1,
label="Token limit",
info=(
"Token limit determines the maximum amount of text output from one prompt. A "
"token is approximately four characters. The default value is 2048."
))
stop_sequences_component = gr.Textbox(
label="Add stop sequence",
value="",
type="text",
placeholder="STOP, END",
info=(
"A stop sequence is a series of characters (including spaces) that stops "
"response generation if the model encounters it. The sequence is not included "
"as part of the response. You can add up to five stop sequences."
))
top_k_component = gr.Slider(
minimum=1,
maximum=40,
value=32,
step=1,
label="Top-K",
info=(
"Top-k changes how the model selects tokens for output. A top-k of 1 means the "
"selected token is the most probable among all tokens in the model’s "
"vocabulary (also called greedy decoding), while a top-k of 3 means that the "
"next token is selected from among the 3 most probable tokens (using "
"temperature)."
))
top_p_component = gr.Slider(
minimum=0,
maximum=1,
value=1,
step=0.01,
label="Top-P",
info=(
"Top-p changes how the model selects tokens for output. Tokens are selected "
"from most probable to least until the sum of their probabilities equals the "
"top-p value. For example, if tokens A, B, and C have a probability of .3, .2, "
"and .1 and the top-p value is .5, then the model will select either A or B as "
"the next token (using temperature). "
))
user_inputs = [
text_prompt_component,
chatbot_component
]
bot_inputs = [
google_key_component,
upload_button_component,
temperature_component,
max_output_tokens_component,
stop_sequences_component,
top_k_component,
top_p_component,
chatbot_component
]
with gr.Blocks() as demo:
with gr.Tab("Company Analysis"):
gr.HTML(TITLE1)
run_button_analysis.click(
fn=company_analysis,
inputs=[
gr.Textbox(label="Enter your OpenAI API Key:", type="password"),
gr.Textbox(label="Enter the Company Name:")
],
outputs=[
gr.Textbox(label="Language"),
gr.Textbox(label="Summary"),
gr.Textbox(label="Translated Email"),
gr.Textbox(label="Reply in English"),
gr.Textbox(label="Reply in Original Language")
]
)
with gr.Tab("Investment Strategy"):
gr.HTML(TITLE2)
gr.HTML(SUBTITLE)
gr.HTML(GETKEY)
with gr.Column():
google_key_component.render()
chatbot_component.render()
with gr.Row():
text_prompt_component.render()
upload_button_component.render()
run_button_component.render()
with gr.Accordion("Parameters", open=False):
temperature_component.render()
max_output_tokens_component.render()
stop_sequences_component.render()
with gr.Accordion("Advanced", open=False):
top_k_component.render()
top_p_component.render()
run_button_component.click(
fn=user,
inputs=user_inputs,
outputs=[text_prompt_component, chatbot_component],
queue=False
).then(
fn=bot, inputs=bot_inputs, outputs=[chatbot_component],
)
text_prompt_component.submit(
fn=user,
inputs=user_inputs,
outputs=[text_prompt_component, chatbot_component],
queue=False
).then(
fn=bot, inputs=bot_inputs, outputs=[chatbot_component],
)
upload_button_component.upload(
fn=upload,
inputs=[upload_button_component, chatbot_component],
outputs=[chatbot_component],
queue=False
)
with gr.Tab("Profit Prophet"):
gr.HTML(TITLE3)
with gr.Row():
with gr.Column(scale=1):
gr.Image(value = "resources/holder.png")
with gr.Column(scale=1):
gr.Image(value = "resources/holder.png")
demo.queue(max_size=99).launch(debug=False, show_error=True)