Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
from clarifai_grpc.channel.clarifai_channel import ClarifaiChannel
|
| 3 |
+
from clarifai_grpc.grpc.api import resources_pb2, service_pb2, service_pb2_grpc
|
| 4 |
+
from clarifai_grpc.grpc.api.status import status_code_pb2
|
| 5 |
+
import io
|
| 6 |
+
|
| 7 |
+
# Function to call Clarifai API
|
| 8 |
+
def get_image_concepts(image_bytes):
|
| 9 |
+
channel = ClarifaiChannel.get_grpc_channel()
|
| 10 |
+
stub = service_pb2_grpc.V2Stub(channel)
|
| 11 |
+
|
| 12 |
+
PAT = 'YOUR_PERSONAL_ACCESS_TOKEN'
|
| 13 |
+
USER_ID = 'clarifai'
|
| 14 |
+
APP_ID = 'main'
|
| 15 |
+
MODEL_ID = 'general-image-detection'
|
| 16 |
+
MODEL_VERSION_ID = 'YOUR_MODEL_VERSION_ID'
|
| 17 |
+
|
| 18 |
+
metadata = (('authorization', 'Key ' + PAT),)
|
| 19 |
+
userDataObject = resources_pb2.UserAppIDSet(user_id=USER_ID, app_id=APP_ID)
|
| 20 |
+
|
| 21 |
+
post_model_outputs_response = stub.PostModelOutputs(
|
| 22 |
+
service_pb2.PostModelOutputsRequest(
|
| 23 |
+
user_app_id=userDataObject,
|
| 24 |
+
model_id=MODEL_ID,
|
| 25 |
+
version_id=MODEL_VERSION_ID,
|
| 26 |
+
inputs=[
|
| 27 |
+
resources_pb2.Input(
|
| 28 |
+
data=resources_pb2.Data(
|
| 29 |
+
image=resources_pb2.Image(
|
| 30 |
+
base64=image_bytes
|
| 31 |
+
)
|
| 32 |
+
)
|
| 33 |
+
)
|
| 34 |
+
]
|
| 35 |
+
),
|
| 36 |
+
metadata=metadata
|
| 37 |
+
)
|
| 38 |
+
|
| 39 |
+
if post_model_outputs_response.status.code != status_code_pb2.SUCCESS:
|
| 40 |
+
raise Exception("Post model outputs failed, status: " + post_model_outputs_response.status.description)
|
| 41 |
+
|
| 42 |
+
return post_model_outputs_response.outputs[0].data.regions
|
| 43 |
+
|
| 44 |
+
# Streamlit interface
|
| 45 |
+
st.title("Image Detection with Clarifai")
|
| 46 |
+
|
| 47 |
+
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
|
| 48 |
+
if uploaded_file is not None:
|
| 49 |
+
image_bytes = uploaded_file.getvalue()
|
| 50 |
+
regions = get_image_concepts(image_bytes)
|
| 51 |
+
for region in regions:
|
| 52 |
+
# Display each detected item
|
| 53 |
+
for concept in region.data.concepts:
|
| 54 |
+
name = concept.name
|
| 55 |
+
value = round(concept.value, 4)
|
| 56 |
+
st.write(f"{name}: {value}")
|
| 57 |
+
|
| 58 |
+
# Run this with `streamlit run your_script_name.py`
|