import os import string from typing import Any, Dict, List, Tuple, Union import chromadb import numpy as np import openai import pandas as pd import requests import streamlit as st from datasets import load_dataset from langchain.document_loaders import TextLoader from langchain.embeddings.sentence_transformer import SentenceTransformerEmbeddings from langchain.text_splitter import CharacterTextSplitter from langchain.vectorstores import Chroma from scipy.spatial.distance import cosine from utils.helper_functions import * openai.api_key = os.environ["OPENAI_API_KEY"] # Front-end Design st.title("YSA|Larkin Chatbot") # Initialize chat history if "messages" not in st.session_state: st.session_state.messages = [] # Display chat messages from history on app rerun for message in st.session_state.messages: with st.chat_message(message["role"]): st.markdown(message["content"]) st.sidebar.markdown( """ ### Instructions: This app guides you through YSA's website, utilizing a RAG-ready Q&A dataset [here](https://huggingface.co/datasets/eagle0504/youthless-homeless-shelter-web-scrape-dataset-qa-formatted) for chatbot assistance. 🤖 Enter a question, and it finds similar ones in the database, offering answers with a distance score to gauge relevance—the lower the score, the closer the match. 🎯 For better accuracy and to reduce errors, user feedback helps refine the database. ✨ """ ) st.sidebar.success( "Please enter a distance threshold (we advise to set it around 0.2)." ) st.sidebar.warning("Select a website first!") option = st.sidebar.selectbox("Which website do you want to ask?", ("YSA", "Larkin")) special_threshold = st.sidebar.number_input( "Insert a number", value=0.2, placeholder="Type a number..." ) # 0.3 clear_button = st.sidebar.button("Clear Conversation", key="clear") st.sidebar.warning( "The 'distances' measures how close your question is to the questions in our database (lower the score the better). The 'ai_judge' measures independent similarity ranking of database answers and user's question (the higher the better)." ) if clear_button: st.session_state.messages = [] # Load the dataset from a provided source. if option == "YSA": dataset = load_dataset( "eagle0504/youthless-homeless-shelter-web-scrape-dataset-qa-formatted" ) initial_input = "Tell me about YSA" else: dataset = load_dataset("eagle0504/larkin-web-scrape-dataset-qa-formatted") initial_input = "Tell me about Larkin" # Initialize a new client for ChromeDB. client = chromadb.Client() # Generate a random number between 1 billion and 10 billion. random_number: int = np.random.randint(low=1e9, high=1e10) # Generate a random string consisting of 10 uppercase letters and digits. random_string: str = "".join( np.random.choice(list(string.ascii_uppercase + string.digits), size=10) ) # Combine the random number and random string into one identifier. combined_string: str = f"{random_number}{random_string}" # Create a new collection in ChromeDB with the combined string as its name. collection = client.create_collection(combined_string) # Embed and store the first N supports for this demo with st.spinner("Loading, please be patient with us ... 🙏"): L = len(dataset["train"]["questions"]) collection.add( ids=[str(i) for i in range(0, L)], # IDs are just strings documents=dataset["train"]["questions"], # Enter questions here metadatas=[{"type": "support"} for _ in range(0, L)], ) # React to user input if prompt := st.chat_input(initial_input): with st.spinner("Loading, please be patient with us ... 🙏"): # Display user message in chat message container st.chat_message("user").markdown(prompt) # Add user message to chat history st.session_state.messages.append({"role": "user", "content": prompt}) question = prompt results = collection.query(query_texts=question, n_results=5) idx = results["ids"][0] idx = [int(i) for i in idx] ref = pd.DataFrame( { "idx": idx, "questions": [dataset["train"]["questions"][i] for i in idx], "answers": [dataset["train"]["answers"][i] for i in idx], "distances": results["distances"][0], } ) # special_threshold = st.sidebar.slider('How old are you?', 0, 0.6, 0.1) # 0.3 filtered_ref = ref[ref["distances"] < special_threshold] if filtered_ref.shape[0] > 0: st.success("There are highly relevant information in our database.") ref_from_db_search = filtered_ref["answers"].str.cat(sep=" ") final_ref = filtered_ref else: st.warning( "The database may not have relevant information to help your question so please be aware of hallucinations." ) ref_from_db_search = ref["answers"].str.cat(sep=" ") final_ref = ref if option == "YSA": try: llm_response = llama2_7b_ysa(question) except: llm_response = "Sorry, the inference endpoint is temporarily down. 😔" else: llm_response = ( "Sorry for the delay. We are in the progress of fine-tune the model. ⚙️" ) finetuned_llm_guess = ["from_llm", question, llm_response, 0] final_ref.loc[-1] = finetuned_llm_guess final_ref.index = final_ref.index + 1 # add ai judge as additional rating independent_ai_judge_score = [] for i in range(final_ref.shape[0]): this_content = final_ref["answers"][i] this_score = calculate_sts_openai_score(question, this_content) independent_ai_judge_score.append(this_score) final_ref["ai_judge"] = independent_ai_judge_score engineered_prompt = f""" Based on the context: {ref_from_db_search} answer the user question: {question} Answer the question directly (don't say "based on the context, ...") """ answer = call_chatgpt(engineered_prompt) response = answer # Display assistant response in chat message container with st.chat_message("assistant"): with st.spinner("Wait for it..."): st.markdown(response) with st.expander("See reference:"): st.table(final_ref) # Add assistant response to chat history st.session_state.messages.append({"role": "assistant", "content": response})