import os import string from typing import Any, Dict, List, Tuple, Union import chromadb import numpy as np import openai import pandas as pd import requests import streamlit as st from datasets import load_dataset from langchain.document_loaders import TextLoader from langchain.embeddings.sentence_transformer import SentenceTransformerEmbeddings from langchain.text_splitter import CharacterTextSplitter from langchain.vectorstores import Chroma from scipy.spatial.distance import cosine openai.api_key = os.environ["OPENAI_API_KEY"] def merge_dataframes(dataframes: List[pd.DataFrame]) -> pd.DataFrame: """ Merges a list of pandas DataFrames into a single DataFrame. This function concatenates the given DataFrames and filters the resulting DataFrame to only include the columns 'context', 'questions', and 'answers'. Parameters: dataframes (List[pd.DataFrame]): A list of DataFrames to be merged. Returns: pd.DataFrame: The concatenated DataFrame containing only the specified columns. """ # Concatenate the list of dataframes combined_dataframe = pd.concat( dataframes, ignore_index=True ) # Combine all dataframes into one # Ensure that the resulting dataframe only contains the columns "context", "questions", "answers" combined_dataframe = combined_dataframe[ ["context", "questions", "answers"] ] # Filter for specific columns return combined_dataframe # Return the merged and filtered DataFrame def call_chatgpt(prompt: str) -> str: """ Uses the OpenAI API to generate an AI response to a prompt. Args: prompt: A string representing the prompt to send to the OpenAI API. Returns: A string representing the AI's generated response. """ # Use the OpenAI API to generate a response based on the input prompt. response = openai.Completion.create( model="gpt-3.5-turbo-instruct", prompt=prompt, temperature=0.5, max_tokens=500, top_p=1, frequency_penalty=0, presence_penalty=0, ) # Extract the text from the first (and only) choice in the response output. ans = response.choices[0]["text"] # Return the generated AI response. return ans def openai_text_embedding(prompt: str) -> str: """ Retrieves the text embedding for a given prompt using OpenAI's text-embedding model. This function utilizes OpenAI's API to generate an embedding for the input text. It specifically uses the "text-embedding-ada-002" model. Parameters: prompt (str): The text input for which to generate an embedding. Returns: str: A string representation of the text embedding. """ # Call OpenAI API to create a text embedding return openai.Embedding.create(input=prompt, model="text-embedding-ada-002")[ "data" ][0][ "embedding" ] # Retrieve the embedding from the response def calculate_sts_openai_score(sentence1: str, sentence2: str) -> float: """ Calculates the Semantic Textual Similarity (STS) between two sentences using OpenAI's text-embedding model. This function computes embeddings for each sentence and then calculates the cosine similarity between these embeddings. A higher score indicates greater similarity. Parameters: sentence1 (str): The first sentence for similarity comparison. sentence2 (str): The second sentence for similarity comparison. Returns: float: The STS score representing the similarity between sentence1 and sentence2. """ # Compute sentence embeddings embedding1 = openai_text_embedding(sentence1) # Flatten the embedding array embedding2 = openai_text_embedding(sentence2) # Flatten the embedding array # Convert embeddings to NumPy arrays embedding1 = np.asarray(embedding1) embedding2 = np.asarray(embedding2) # Calculate cosine similarity between the embeddings # Since 'cosine' returns the distance, 1 - distance is used to get similarity similarity_score = 1 - cosine(embedding1, embedding2) return similarity_score def add_dist_score_column( dataframe: pd.DataFrame, sentence: str, ) -> pd.DataFrame: """ Adds a new column to the provided DataFrame with STS (Semantic Textual Similarity) scores, calculated between a given sentence and each question in the 'questions' column of the DataFrame. The DataFrame is then sorted by this new column in descending order and the top 5 rows are returned. Parameters: dataframe (pd.DataFrame): A pandas DataFrame containing a 'questions' column. sentence (str): The sentence against which to compute STS scores for each question in the DataFrame. Returns: pd.DataFrame: A DataFrame containing the original data along with the new 'stsopenai' column, sorted by the 'stsopenai' column, and limited to the top 5 entries with the highest scores. """ # Calculate the STS score between `sentence` and each row's `question` dataframe["stsopenai"] = dataframe["questions"].apply( lambda x: calculate_sts_openai_score(str(x), sentence) ) # Sort the dataframe by the newly added 'stsopenai' column in descending order sorted_dataframe = dataframe.sort_values(by="stsopenai", ascending=False) # Return the top 5 rows from the sorted dataframe return sorted_dataframe.iloc[:5, :] def convert_to_list_of_dict(df: pd.DataFrame) -> List[Dict[str, str]]: """ Reads in a pandas DataFrame and produces a list of dictionaries with two keys each, 'question' and 'answer.' Args: df: A pandas DataFrame with columns named 'questions' and 'answers'. Returns: A list of dictionaries, with each dictionary containing a 'question' and 'answer' key-value pair. """ # Initialize an empty list to store the dictionaries result = [] # Loop through each row of the DataFrame for index, row in df.iterrows(): # Create a dictionary with the current question and answer qa_dict_quest = {"role": "user", "content": row["questions"]} qa_dict_ans = {"role": "assistant", "content": row["answers"]} # Add the dictionary to the result list result.append(qa_dict_quest) result.append(qa_dict_ans) # Return the list of dictionaries return result def query(payload: Dict[str, Any]) -> Dict[str, Any]: """ Sends a JSON payload to a predefined API URL and returns the JSON response. Args: payload (Dict[str, Any]): The JSON payload to be sent to the API. Returns: Dict[str, Any]: The JSON response received from the API. """ # API endpoint URL API_URL = "https://sks7h7h5qkhoxwxo.us-east-1.aws.endpoints.huggingface.cloud" # Headers to indicate both the request and response formats are JSON headers = {"Accept": "application/json", "Content-Type": "application/json"} # Sending a POST request with the JSON payload and headers response = requests.post(API_URL, headers=headers, json=payload) # Returning the JSON response return response.json() def llama2_7b_ysa(prompt: str) -> str: """ Queries a model and retrieves the generated text based on the given prompt. This function sends a prompt to a model (presumably named 'llama2_7b') and extracts the generated text from the model's response. It's tailored for handling responses from a specific API or model query structure where the response is expected to be a list of dictionaries, with at least one dictionary containing a key 'generated_text'. Parameters: - prompt (str): The text prompt to send to the model. Returns: - str: The generated text response from the model. Note: - The function assumes that the 'query' function is previously defined and accessible within the same scope or module. It should send a request to the model and return the response in a structured format. - The 'parameters' dictionary is passed empty but can be customized to include specific request parameters as needed by the model API. """ # Define the query payload with the prompt and any additional parameters query_payload: Dict[str, Any] = { "inputs": prompt, "parameters": {"max_new_tokens": 20}, } # Send the query to the model and store the output response output = query(query_payload) # Extract the 'generated_text' from the first item in the response list response: str = output[0]["generated_text"] return response def quantize_to_kbit(arr: Union[np.ndarray, Any], k: int = 16) -> np.ndarray: """Converts an array to a k-bit representation by normalizing and scaling its values. Args: arr (Union[np.ndarray, Any]): The input array to be quantized. k (int): The number of levels to quantize to. Defaults to 16 for 4-bit quantization. Returns: np.ndarray: The quantized array with values scaled to 0 to k-1. """ if not isinstance(arr, np.ndarray): # Check if input is not a numpy array arr = np.array(arr) # Convert input to a numpy array arr_min = arr.min() # Calculate the minimum value in the array arr_max = arr.max() # Calculate the maximum value in the array normalized_arr = (arr - arr_min) / (arr_max - arr_min) # Normalize array values to [0, 1] return np.round(normalized_arr * (k - 1)).astype(int) # Scale normalized values to 0-(k-1) and convert to integer def quantized_influence(arr1: np.ndarray, arr2: np.ndarray, k: int = 16, use_dagger: bool = False) -> Tuple[float, List[float]]: """ Calculates a weighted measure of influence based on quantized version of input arrays and optionally applies a transformation. Args: arr1 (np.ndarray): First input array to be quantized and analyzed. arr2 (np.ndarray): Second input array to be quantized and used for influence measurement. k (int): The quantization level, defaults to 16 for 4-bit quantization. use_dagger (bool): Flag to apply a transformation based on local averages, defaults to False. Returns: Tuple[float, List[float]]: A tuple containing the quantized influence measure and an optional list of transformed values based on local estimates. """ # Quantize both arrays to k levels arr1_quantized = quantize_to_kbit(arr1, k) arr2_quantized = quantize_to_kbit(arr2, k) # Find unique quantized values in arr1 unique_values = np.unique(arr1_quantized) # Compute the global average of quantized arr2 total_samples = len(arr2_quantized) y_bar_global = np.mean(arr2_quantized) # Compute weighted local averages and normalize weighted_local_averages = [(np.mean(arr2_quantized[arr1_quantized == val]) - y_bar_global)**2 * len(arr2_quantized[arr1_quantized == val])**2 for val in unique_values] qim = np.sum(weighted_local_averages) / (total_samples * np.std(arr2_quantized)) # Calculate the quantized influence measure if use_dagger: # If use_dagger is True, compute local estimates and map them to unique quantized values local_estimates = [np.mean(arr2_quantized[arr1_quantized == val]) for val in unique_values] daggers = {unique_values[i]: v for i, v in enumerate(local_estimates)} # Map unique values to local estimates def find_val_(i: int) -> float: """Helper function to map quantized values to their local estimates.""" return daggers[i] # Apply transformation based on local estimates daggered_values = list(map(find_val_, arr1_quantized)) else: # If use_dagger is False, return the original quantized arr1 values daggered_values = arr1_quantized.tolist() return qim, daggered_values