import os import string from typing import Any, Dict, List, Tuple, Union import chromadb import numpy as np import openai import pandas as pd import requests import streamlit as st from datasets import load_dataset from langchain.document_loaders import TextLoader from langchain.embeddings.sentence_transformer import SentenceTransformerEmbeddings from langchain.text_splitter import CharacterTextSplitter from langchain.vectorstores import Chroma from scipy.spatial.distance import cosine openai.api_key = os.environ["OPENAI_API_KEY"] def merge_dataframes(dataframes: List[pd.DataFrame]) -> pd.DataFrame: """Merges a list of DataFrames, keeping only specific columns.""" # Concatenate the list of dataframes combined_dataframe = pd.concat( dataframes, ignore_index=True ) # Combine all dataframes into one # Ensure that the resulting dataframe only contains the columns "context", "questions", "answers" combined_dataframe = combined_dataframe[ ["context", "questions", "answers"] ] # Filter for specific columns return combined_dataframe # Return the merged and filtered DataFrame def call_chatgpt(prompt: str) -> str: """ Uses the OpenAI API to generate an AI response to a prompt. Args: prompt: A string representing the prompt to send to the OpenAI API. Returns: A string representing the AI's generated response. """ # Use the OpenAI API to generate a response based on the input prompt. response = openai.Completion.create( model="gpt-3.5-turbo-instruct", prompt=prompt, temperature=0.5, max_tokens=500, top_p=1, frequency_penalty=0, presence_penalty=0, ) # Extract the text from the first (and only) choice in the response output. ans = response.choices[0]["text"] # Return the generated AI response. return ans def openai_text_embedding(prompt: str) -> str: return openai.Embedding.create(input=prompt, model="text-embedding-ada-002")[ "data" ][0]["embedding"] def calculate_sts_openai_score(sentence1: str, sentence2: str) -> float: # Compute sentence embeddings embedding1 = openai_text_embedding(sentence1) # Flatten the embedding array embedding2 = openai_text_embedding(sentence2) # Flatten the embedding array # Convert to array embedding1 = np.asarray(embedding1) embedding2 = np.asarray(embedding2) # Calculate cosine similarity between the embeddings similarity_score = 1 - cosine(embedding1, embedding2) return similarity_score def add_dist_score_column( dataframe: pd.DataFrame, sentence: str, ) -> pd.DataFrame: dataframe["stsopenai"] = dataframe["questions"].apply( lambda x: calculate_sts_openai_score(str(x), sentence) ) sorted_dataframe = dataframe.sort_values(by="stsopenai", ascending=False) return sorted_dataframe.iloc[:5, :] def convert_to_list_of_dict(df: pd.DataFrame) -> List[Dict[str, str]]: """ Reads in a pandas DataFrame and produces a list of dictionaries with two keys each, 'question' and 'answer.' Args: df: A pandas DataFrame with columns named 'questions' and 'answers'. Returns: A list of dictionaries, with each dictionary containing a 'question' and 'answer' key-value pair. """ # Initialize an empty list to store the dictionaries result = [] # Loop through each row of the DataFrame for index, row in df.iterrows(): # Create a dictionary with the current question and answer qa_dict_quest = {"role": "user", "content": row["questions"]} qa_dict_ans = {"role": "assistant", "content": row["answers"]} # Add the dictionary to the result list result.append(qa_dict_quest) result.append(qa_dict_ans) # Return the list of dictionaries return result def query(payload: Dict[str, Any]) -> Dict[str, Any]: """ Sends a JSON payload to a predefined API URL and returns the JSON response. Args: payload (Dict[str, Any]): The JSON payload to be sent to the API. Returns: Dict[str, Any]: The JSON response received from the API. """ # API endpoint URL API_URL = "https://sks7h7h5qkhoxwxo.us-east-1.aws.endpoints.huggingface.cloud" # Headers to indicate both the request and response formats are JSON headers = {"Accept": "application/json", "Content-Type": "application/json"} # Sending a POST request with the JSON payload and headers response = requests.post(API_URL, headers=headers, json=payload) # Returning the JSON response return response.json() def llama2_7b_ysa(prompt: str) -> str: """ Queries a model and retrieves the generated text based on the given prompt. This function sends a prompt to a model (presumably named 'llama2_7b') and extracts the generated text from the model's response. It's tailored for handling responses from a specific API or model query structure where the response is expected to be a list of dictionaries, with at least one dictionary containing a key 'generated_text'. Parameters: - prompt (str): The text prompt to send to the model. Returns: - str: The generated text response from the model. Note: - The function assumes that the 'query' function is previously defined and accessible within the same scope or module. It should send a request to the model and return the response in a structured format. - The 'parameters' dictionary is passed empty but can be customized to include specific request parameters as needed by the model API. """ # Define the query payload with the prompt and any additional parameters query_payload: Dict[str, Any] = { "inputs": prompt, "parameters": {"max_new_tokens": 200}, } # Send the query to the model and store the output response output = query(query_payload) # Extract the 'generated_text' from the first item in the response list response: str = output[0]["generated_text"] return response def quantize_to_4bit(arr: Union[np.ndarray, Any]) -> np.ndarray: """Converts an array to a 4-bit representation by normalizing and scaling its values.""" if not isinstance(arr, np.ndarray): # Ensure input is a numpy array arr = np.array(arr) arr_min = arr.min() # Find minimum value arr_max = arr.max() # Find maximum value normalized_arr = (arr - arr_min) / (arr_max - arr_min) # Normalize values to [0, 1] return np.round(normalized_arr * 15).astype(int) # Scale to 0-15 and round def quantized_influence(arr1: np.ndarray, arr2: np.ndarray) -> float: """Calculates a weighted measure of influence based on quantized version of input arrays.""" arr1_4bit = quantize_to_4bit(arr1) # Quantize arr1 to 4-bit arr2_4bit = quantize_to_4bit(arr2) # Quantize arr2 to 4-bit unique_values = np.unique(arr1_4bit) # Find unique values in arr1_4bit y_bar_global = np.mean(arr2_4bit) # Compute global average of arr2_4bit # Compute weighted local averages and normalize weighted_local_averages = [(np.mean(arr2_4bit[arr1_4bit == val])-y_bar_global)**2 * len(arr2_4bit[arr1_4bit == val])**2 for val in unique_values] return np.mean(weighted_local_averages) / np.std(arr2_4bit) # Return normalized weighted average