import streamlit as st import pandas as pd import os import numpy as np from sentence_transformers import SentenceTransformer, models import torch from sentence_transformers.quantization import semantic_search_faiss from pathlib import Path import time import plotly.express as px import doi import requests from groq import Groq import dropbox from datetime import datetime, timedelta API_URL = ( "https://api-inference.huggingface.co/models/mixedbread-ai/mxbai-embed-large-v1" ) summarization_API_URL = ( "https://api-inference.huggingface.co/models/Falconsai/text_summarization" ) LLM_API_URL = ( "https://api-inference.huggingface.co/models/HuggingFaceH4/zephyr-7b-beta" ) API_TOKEN = st.secrets["hf_token"] # Replace with your Hugging Face API token headers = {"Authorization": f"Bearer {API_TOKEN}"} def query_hf_api(text, api=API_URL, parameters=None): if not parameters: payload = {"inputs": text} else: payload = { "inputs": text, "parameters": parameters, } response = requests.post(api, headers=headers, json=payload) try: response_data = response.json() except requests.exceptions.JSONDecodeError: st.error("Failed to get a valid response from the server. Please try again later.") return {} # Prepare an empty placeholder that can be filled if needed progress_placeholder = st.empty() # Check if the model is currently loading if "error" in response_data and "loading" in response_data["error"]: estimated_time = response_data.get("estimated_time", 30) # Default wait time to 30 seconds if not provided with progress_placeholder.container(): st.warning(f"Model from :hugging_face: is currently loading. Estimated wait time: {estimated_time:.1f} seconds. Please wait...") # Create a progress bar within the container progress_bar = st.progress(0) for i in range(int(estimated_time) + 5): # Adding a buffer time to ensure the model is loaded # Update progress bar. The factor of 100 is used to convert to percentage completion progress = int((i / (estimated_time + 5)) * 100) progress_bar.progress(progress) time.sleep(1) # Wait for a second # Clear the placeholder once loading is complete progress_placeholder.empty() st.rerun() # Rerun the app after waiting return response_data def normalize_embeddings(embeddings): """ Normalizes the embeddings matrix, so that each sentence embedding has unit length. Args: embeddings (Tensor): The embeddings tensor to normalize. Returns: Tensor: The normalized embeddings. """ if embeddings.dim() == 1: # Add an extra dimension if the tensor is 1-dimensional embeddings = embeddings.unsqueeze(0) return torch.nn.functional.normalize(embeddings, p=2, dim=1) def quantize_embeddings( embeddings, precision="ubinary", ranges=None, calibration_embeddings=None ): """ Quantizes embeddings to a specified precision using PyTorch and numpy. Args: embeddings (Tensor): The embeddings to quantize, assumed to be a Tensor. precision (str): The precision to convert to. ranges (np.ndarray, optional): Ranges for quantization. calibration_embeddings (Tensor, optional): Embeddings used for calibration. Returns: Tensor: The quantized embeddings. """ if precision == "float32": return embeddings.float() if precision in ["int8", "uint8"]: if ranges is None: if calibration_embeddings is not None: ranges = torch.stack( ( torch.min(calibration_embeddings, dim=0)[0], torch.max(calibration_embeddings, dim=0)[0], ) ) else: ranges = torch.stack( (torch.min(embeddings, dim=0)[0], torch.max(embeddings, dim=0)[0]) ) starts, ends = ranges[0], ranges[1] steps = (ends - starts) / 255 if precision == "uint8": quantized_embeddings = torch.clip( ((embeddings - starts) / steps), 0, 255 ).byte() elif precision == "int8": quantized_embeddings = torch.clip( ((embeddings - starts) / steps - 128), -128, 127 ).char() elif precision == "binary" or precision == "ubinary": embeddings_np = embeddings.numpy() > 0 packed_bits = np.packbits(embeddings_np, axis=-1) if precision == "binary": quantized_embeddings = torch.from_numpy(packed_bits - 128).char() else: quantized_embeddings = torch.from_numpy(packed_bits).byte() else: raise ValueError(f"Precision {precision} is not supported") return quantized_embeddings def process_embeddings(embeddings, precision="ubinary", calibration_embeddings=None): """ Normalizes and quantizes embeddings from an API list to a specified precision using PyTorch. Args: embeddings (list or Tensor): Raw embeddings from an external API, either as a list or a Tensor. precision (str): Desired precision for quantization. calibration_embeddings (Tensor, optional): Embeddings for calibration. Returns: Tensor: Processed embeddings, normalized and quantized. """ # Convert list to Tensor if necessary if isinstance(embeddings, list): embeddings = torch.tensor(embeddings, dtype=torch.float32) elif not isinstance(embeddings, torch.Tensor): st.error(embeddings) raise TypeError( f"Embeddings must be a list or a torch.Tensor. Message from the server: {embeddings}" ) # Convert calibration_embeddings list to Tensor if necessary if isinstance(calibration_embeddings, list): calibration_embeddings = torch.tensor( calibration_embeddings, dtype=torch.float32 ) elif calibration_embeddings is not None and not isinstance( calibration_embeddings, torch.Tensor ): raise TypeError( "Calibration embeddings must be a list or a torch.Tensor if provided. " ) normalized_embeddings = normalize_embeddings(embeddings) quantized_embeddings = quantize_embeddings( normalized_embeddings, precision=precision, calibration_embeddings=calibration_embeddings, ) return quantized_embeddings.cpu().numpy() def connect_to_dropbox(): dropbox_APP_KEY = st.secrets["dropbox_APP_KEY"] dropbox_APP_SECRET = st.secrets["dropbox_APP_SECRET"] dropbox_REFRESH_TOKEN = st.secrets["dropbox_REFRESH_TOKEN"] dbx = dbx = dropbox.Dropbox( app_key = dropbox_APP_KEY, app_secret = dropbox_APP_SECRET, oauth2_refresh_token = dropbox_REFRESH_TOKEN ) return dbx def list_files(dropbox_path): dbx = connect_to_dropbox() files = [] try: response = dbx.files_list_folder(dropbox_path) files = response.entries except Exception as e: st.error(f"Failed to list files: {str(e)}") return files def download_folder(dropbox_path, local_path): placeholder = st.empty() dbx = connect_to_dropbox() try: if not os.path.exists(local_path): os.makedirs(local_path) response = dbx.files_list_folder(dropbox_path) total_files = len(response.entries) if total_files == 0: return current_file = 0 for entry in response.entries: local_file_path = Path(local_path) / entry.name if isinstance(entry, dropbox.files.FileMetadata): # Only download if the file does not exist locally if not local_file_path.exists(): placeholder.write(f'Downloading {entry.name}') dbx.files_download_to_file(str(local_file_path), entry.path_lower) elif isinstance(entry, dropbox.files.FolderMetadata): # Recursively download contents of the directory download_folder(entry.path_lower, str(local_file_path)) current_file += 1 placeholder.empty() except Exception as e: st.error(f"Failed to download: {str(e)}") placeholder.empty() def download_data_from_dropbox(): # Check if 'last_download_time' is in the session state and if 24 hours have passed if True: placeholder = st.empty() placeholder.write('Downloading data...') local_path = os.getcwd() # Run the download function download_folder('//', local_path) # Update the session state with the current time st.session_state.last_download_time = datetime.now() placeholder.write("Download completed and data updated.") placeholder.empty() # Load data and embeddings @st.cache_resource(ttl="1d") def load_data_embeddings(): existing_data_path = "aggregated_data" new_data_directory = "db_update" existing_embeddings_path = "biorxiv_ubin_embaddings.npy" updated_embeddings_directory = "embed_update" # Load existing database and embeddings df_existing = pd.read_parquet(existing_data_path) embeddings_existing = np.load(existing_embeddings_path, allow_pickle=True) # Prepare lists to collect new updates df_updates_list = [] embeddings_updates_list = [] # Ensure pairing of new data and embeddings by their matching filenames new_data_files = sorted(Path(new_data_directory).glob("*.parquet")) for data_file in new_data_files: # Assuming naming convention allows direct correlation corresponding_embedding_file = Path(updated_embeddings_directory) / ( data_file.stem + ".npy" ) if corresponding_embedding_file.exists(): # Load and append DataFrame and embeddings df_updates_list.append(pd.read_parquet(data_file)) embeddings_updates_list.append(np.load(corresponding_embedding_file)) else: print(f"No corresponding embedding file found for {data_file.name}") # Concatenate all updates if df_updates_list: df_updates = pd.concat(df_updates_list) else: df_updates = pd.DataFrame() if embeddings_updates_list: embeddings_updates = np.vstack(embeddings_updates_list) else: embeddings_updates = np.array([]) # Append new data to existing, handling duplicates as needed df_combined = pd.concat([df_existing, df_updates]) # create a mask for filtering mask = ~df_combined.duplicated(subset=["title"], keep="last") df_combined = df_combined[mask] # Combine embeddings, ensuring alignment with the DataFrame embeddings_combined = ( np.vstack([embeddings_existing, embeddings_updates]) if embeddings_updates.size else embeddings_existing ) # filter the embeddings based on dataframe unique entries embeddings_combined = embeddings_combined[mask] return df_combined, embeddings_combined LLM_prompt = "Review the abstracts listed below and create a list and summary that captures their main themes and findings. Identify any commonalities across the abstracts and highlight these in your summary. Ensure your response is concise, avoids external links, and is formatted in markdown.\n\n" def summarize_abstract(abstract, llm_model="llama3-70b-8192", instructions=LLM_prompt, api_key=st.secrets["groq_token"]): """ Summarizes the provided abstract using a specified LLM model. Parameters: - abstract (str): The abstract text to be summarized. - llm_model (str): The LLM model used for summarization. Defaults to "llama3-70b-8192". Returns: - str: A summary of the abstract, condensed into one to two sentences. """ # Initialize the Groq client with the API key from environment variables client = Groq(api_key=api_key) formatted_text = "\n".join(f"{idx + 1}. {abstract}" for idx, abstract in enumerate(abstracts)) try: # Create a chat completion with the abstract and specified LLM model chat_completion = client.chat.completions.create( messages=[{"role": "user", "content": f'{instructions} "{formatted_text}"'}], model=llm_model, ) except: return 'Groq model not available or above the usage limit. Use own API key from here: https://console.groq.com/keys' # Return the summarized content return chat_completion.choices[0].message.content ### To use with local setup # @st.cache_resource() # def model_to_device(): # # Determine the device to use: use CUDA if available; otherwise, use CPU. # device = "cuda" if torch.cuda.is_available() else "cpu" # model = SentenceTransformer("mixedbread-ai/mxbai-embed-large-v1") # model.to(device) # return model def define_style(): st.markdown( """ """, unsafe_allow_html=True, ) def logo(db_update_date, db_size): # Initialize Streamlit app image_path = "https://www.biorxiv.org/sites/default/files/biorxiv_logo_homepage.png" st.markdown( f"""
BioRxiv logo

Manuscript Semantic Search [bMSS]

Last database update: {db_update_date}; Database size: {db_size} entries
""", unsafe_allow_html=True, ) st.set_page_config( page_title="bMSS", page_icon=":scroll:", ) download_data_from_dropbox() define_style() df, embeddings_unique = load_data_embeddings() logo(df["date"].max(), df.shape[0]) # model = model_to_device() corpus_index = None corpus_precision = "ubinary" use_hf = False query = st.text_input("Enter your search query:") col1, col2 = st.columns(2) with col1: num_to_show = st.number_input( "Number of results to show:", min_value=1, max_value=50, value=10 ) with col2: use_ai = st.checkbox('Use AI generated summary?') if use_ai: with col2: groq_api_provided = st.text_input('Own Groq API KEY to remove limits', '', help='To obtain own Groq key go to https://console.groq.com/keys') if not groq_api_provided: groq_api_provided = st.secrets["groq_token"] #use_hf = st.checkbox('Use free HF gemma 2B instead? (poor quality)') if query: with st.spinner("Searching..."): # Encode the query search_start_time = time.time() # query_embedding = model.encode([query], normalize_embeddings=True, precision=corpus_precision) embedding_time = time.time() raw_embadding = query_hf_api(query) query_embedding = process_embeddings(raw_embadding) embedding_time_total = time.time() - embedding_time # Perform the search results, search_time, corpus_index = semantic_search_faiss( query_embedding, corpus_index=corpus_index, corpus_embeddings=embeddings_unique if corpus_index is None else None, corpus_precision=corpus_precision, top_k=num_to_show, # type: ignore calibration_embeddings=None, rescore=False, rescore_multiplier=4, exact=True, output_index=True, ) search_end_time = time.time() search_duration = search_end_time - search_start_time st.markdown( f"
Search Completed in {search_duration:.2f} seconds (embeddings time: {embedding_time_total:.2f})
", unsafe_allow_html=True, ) # Prepare the results for plotting plot_data = {"Date": [], "Title": [], "Score": [], "DOI": [], "category": []} search_df = pd.DataFrame(results[0]) # Find the minimum and maximum original scores min_score = search_df["score"].min() max_score = search_df["score"].max() # Normalize scores. The best score (min_score) becomes 100%, and the worst score (max_score) gets a value above 0%. search_df["score"] = abs(search_df["score"] - max_score) + min_score abstracts = [] # Iterate over each row in the search_df DataFrame for index, entry in search_df.iterrows(): row = df.iloc[int(entry["corpus_id"])] # Construct the DOI link try: doi_link = f"{doi.get_real_url_from_doi(row['doi'])}" except: doi_link = f'https://www.doi.org/'+row['doi'] # Append information to plot_data for visualization plot_data["Date"].append(row["date"]) plot_data["Title"].append(row["title"]) plot_data["Score"].append(search_df["score"][index]) # type: ignore plot_data["DOI"].append(row["doi"]) plot_data["category"].append(row["category"]) #summary_text = summarize_abstract(row['abstract']) with st.expander(f"{index+1}\. {row['title']}"): # type: ignore st.markdown(f"**Score:** {entry['score']:.1f}") st.markdown(f"**Authors:** {row['authors']}") col1, col2 = st.columns(2) col2.markdown(f"**Category:** {row['category']}") col1.markdown(f"**Date:** {row['date']}") #st.markdown(f"**Summary:**\n{summary_text}", unsafe_allow_html=False) abstracts.append(row['abstract']) st.markdown( f"**Abstract:**\n{row['abstract']}", unsafe_allow_html=False ) st.markdown( f"**[Full Text Read]({doi_link})** 🔗", unsafe_allow_html=True ) plot_df = pd.DataFrame(plot_data) # Convert 'Date' to datetime if it's not already in that format plot_df["Date"] = pd.to_datetime(plot_df["Date"]) # Sort the DataFrame based on the Date to make sure it's ordered plot_df = plot_df.sort_values(by="Date") if use_ai: if not use_hf: ai_gen_start = time.time() st.markdown('**AI Summary of 10 abstracts:**') st.markdown(summarize_abstract(abstracts[:9], api_key=str(groq_api_provided))) total_ai_time = time.time()-ai_gen_start st.markdown(f'**Time to generate summary:** {total_ai_time:.2f} s') # Need to figure our how to get it from huggingface else: ai_gen_start = time.time() st.markdown('**AI Summary of 10 abstracts:**') formatted_text = str(LLM_prompt+"\n".join(f"{idx + 1}. {abstract}" for idx, abstract in enumerate(abstracts[:9]))) prompt = f"Human: \n {formatted_text}\n\n AI:" LLM_answer = query_hf_api(formatted_text, summarization_API_URL)[0] #['generated_text'] if 'AI:' in LLM_answer: LLM_answer = LLM_answer.split('AI: ')[1] st.markdown(LLM_answer) total_ai_time = time.time()-ai_gen_start st.markdown(f'**Time to generate summary:** {total_ai_time:.2f} s') # Create a Plotly figure fig = px.scatter( plot_df, x="Date", y="Score", hover_data=["Title", "DOI"], title="Publication Times and Scores", ) fig.update_traces(marker=dict(size=10)) # Customize hover text to display the title and link it to the DOI fig.update_traces( hovertemplate="%{hovertext}", hovertext=plot_df.apply(lambda row: f"{row['Title']}", axis=1), ) # Show the figure in the Streamlit app st.plotly_chart(fig, use_container_width=True) # Generate category counts for the pie chart category_counts = plot_df["category"].value_counts().reset_index() category_counts.columns = ["category", "count"] # Create a pie chart with Plotly Express fig = px.pie( category_counts, values="count", names="category", title="Category Distribution", ) # Show the pie chart in the Streamlit app st.plotly_chart(fig, use_container_width=True) st.markdown( """
Developed by Dawid Zyla
Source code on GitHub
""", unsafe_allow_html=True, )