from flask import Flask, render_template, jsonify app = Flask(__name__) # Replace with your AssemblyAI API key ASSEMBLYAI_API_KEY = "67883cd71f0d4a58a27a34e058f0d924" # URL of the file to transcribe FILE_URL = "/content/call.mp3" # You can also transcribe a local file by passing in a file path # FILE_URL = './path/to/file.mp3' @app.route('/analyze', methods=['GET']) def analyze(): # Transcribe audio to text transcriber = aai.Transcriber(api_key=ASSEMBLYAI_API_KEY) transcript = transcriber.transcribe(FILE_URL) text = transcript.text # Perform sentiment analysis sentiment_analyzer = pipeline("sentiment-analysis") sentiment = sentiment_analyzer(text) # Perform emotion analysis emotion_analyzer = pipeline("text-classification", model="j-hartmann/emotion-english-distilroberta-base", return_all_scores=True) emotions = emotion_analyzer(text) # Format results result = { "transcript": text, "sentiment": { "score": sentiment[0]['score'], "label": sentiment[0]['label'] }, "emotion": [{ "label": emotion['label'], "score": emotion['score'] } for emotion in emotions[0]] } return render_template('analyze.html', result=result) if __name__ == '__main__': app.run(debug=True)