import os import openai import datetime import gradio as gr import json from jinja2 import Template import csv import requests # Configuration variables AIRTABLE_API_KEY = os.getenv("AIRTABLE_API_KEY") # Airtable table names policies_table_name = 'tbla6PC65qZfqdJhE' prompts_table_name = 'tblYIZEB8m6JkGDEP' qalog_table_name = 'tbl4oNgFPWM5xH1XO' examples_table_name = 'tblu7sraOEmRgEGkp' user_log_table_name = 'tblrlTsRrkl6BqMAJ' # Define the style and content for the response field label_text = "NILI Response" color = "#6562F4" background_color = "white" border_radius = "10px" response_label = f'

{label_text}

' # Initialize OpenAI openai.api_key = os.getenv("OPENAI_API_KEY") base_id = 'appcUK3hUWC7GM2Kb' HEADERS = { "Authorization": f"Bearer {AIRTABLE_API_KEY}", "Content-Type": "application/json", "Accept": "application/json", } def get_policies(school_selection): AIRTABLE_ENDPOINT = f'https://api.airtable.com/v0/{base_id}/{policies_table_name}' school = '' # Parameters for the API request to filter by 'school' field and retrieve 'policy_text' params = { 'filterByFormula': "OR({})".format(','.join(["school='{}'".format(school) for school in school_selection])), 'fields[]': 'policy_text', # Replace with the name of your field } #print(params) try: # Send a GET request to the Airtable API response = requests.get(AIRTABLE_ENDPOINT, headers=HEADERS, params=params) # Check if the request was successful (status code 200) if response.status_code == 200: # Parse the JSON response data = response.json() # Check if there are records in the response if data.get('records'): # Initialize an empty string to store concatenated policies concatenated_policies = '' # Extract the 'policy_text' values from each record and concatenate them for record in data['records']: policy_text = record['fields']['policy_text'] if concatenated_policies: concatenated_policies += "\n----------\n" concatenated_policies += policy_text else: print("No records found in the 'policies' table for the selected schools.") else: print(f"Failed to retrieve data. Status code: {response.status_code}") except Exception as e: print(f"An error occurred: {str(e)}") #print(concatenated_policies) return concatenated_policies def get_schools(): AIRTABLE_ENDPOINT = f'https://api.airtable.com/v0/{base_id}/{policies_table_name}' # Parameters for the API request to select only the 'school' field params = { 'fields[]': 'school', # Replace with the name of your field 'sort[0][field]': 'school', # Sort by the 'school' field 'sort[0][direction]': 'asc', # Sort in ascending order } try: # Send a GET request to the Airtable API response = requests.get(AIRTABLE_ENDPOINT, headers=HEADERS, params=params) # Check if the request was successful (status code 200) if response.status_code == 200: # Parse the JSON response data = response.json() # Check if there are records in the response if data.get('records'): # Extract the 'school' values from each record schools = [record['fields']['school'] for record in data['records']] # Print the list of 'school' values # print(schools) else: print("No records found in the 'policies' table.") else: print(f"Failed to retrieve data. Status code: {response.status_code}") except Exception as e: print(f"An error occurred: {str(e)}") return schools def get_prompt(header, template_content): AIRTABLE_ENDPOINT = f'https://api.airtable.com/v0/{base_id}/{prompts_table_name}' params = { 'filterByFormula': "prompt_name='NILI_v1'", } response = requests.get(AIRTABLE_ENDPOINT, headers=HEADERS, params=params) # Check for errors response.raise_for_status() data = response.json() # Check if there is at least one record matching the condition if data.get('records'): # Get the first record (there should be only one) record = data['records'][0]['fields'] # Assign system_prompt and user_prompt to variables header = record.get('system_prompt', '') template_content = record.get('user_prompt', '') return header, template_content def get_examples(): AIRTABLE_ENDPOINT = f'https://api.airtable.com/v0/{base_id}/{examples_table_name}' # Send your request and parse the response response = requests.get(AIRTABLE_ENDPOINT, headers=HEADERS) data = json.loads(response.text) # Check for errors response.raise_for_status() for record in data['records']: nil_question = record['fields']['nil_question'] ui_examples.append([None, None, None, nil_question]) #print(ui_examples) def append_to_at_qalog(your_role, school_selection, output_format, input_text, gpt_response,response_time,question_cost,prompt_tokens,completion_tokens): AIRTABLE_ENDPOINT = f'https://api.airtable.com/v0/{base_id}/{qalog_table_name}' # Organize data for Airtable new_fields = { 'your_role': str(your_role), 'school_selection': str(school_selection), 'output_format': str(output_format), 'input_text': str(input_text), 'gpt_response': str(gpt_response), 'response_time': str(response_time), 'question_cost': question_cost, 'user_name': str(logged_in_user), 'prompt_tokens': prompt_tokens, 'completion_tokens': completion_tokens } data = { 'fields': new_fields } # Post data to Airtable response = requests.post(AIRTABLE_ENDPOINT, headers=HEADERS, json=data) # Check for errors response.raise_for_status() #Chatbot Function def chatbot(your_role,school_selection,output_format,input_text): start_time = datetime.datetime.now() # school_selection holds an array of one or more schools #print(school_selection) # Read the Hydrated policies policies = get_policies(school_selection) template_content = '' header = '' header, template_content = get_prompt(header, template_content) #print(header) #print(template_content) # Create a Jinja2 template from the content template = Template(template_content) # Render the template with the policy JSON analysis_input = template.render(policies=policies, question=input_text,format=output_format) with open('analysis_input.txt', 'w', encoding='utf-8') as out_file: out_file.write(analysis_input) response = openai.ChatCompletion.create( model="gpt-4", # model="gpt-3.5-turbo", temperature=0, messages=[ { "role": "system", "content": header }, { "role": "user", "content": analysis_input } ] ) gpt_response = response.choices[0].message["content"] tokens_used = response.usage question_cost = (tokens_used.get('total_tokens', 0) / 1000) * .03 prompt_tokens = tokens_used.get('prompt_tokens',) completion_tokens = tokens_used.get('completion_tokens', 0) #print(question_cost) """ with open('response.txt', 'w', encoding='utf-8') as out_file: out_file.write(gpt_response) """ end_time = datetime.datetime.now() response_time = end_time - start_time append_to_at_qalog(your_role, school_selection, output_format, input_text, gpt_response,response_time,question_cost,prompt_tokens,completion_tokens) #append_to_qalog(your_role, school_selection, output_format, input_text, gpt_response,response_time,question_cost) return response_label,gpt_response def log_login(username): AIRTABLE_ENDPOINT = f'https://api.airtable.com/v0/{base_id}/{user_log_table_name}' # Organize data for Airtable new_fields = { 'user_name': str(username), } data = { 'fields': new_fields } # Post data to Airtable response = requests.post(AIRTABLE_ENDPOINT, headers=HEADERS, json=data) # Check for errors response.raise_for_status() def login_auth(username, password): AIRTABLE_ENDPOINT = f'https://api.airtable.com/v0/{base_id}/{users_table_name}' # Query the 'users' table to check for a match with the provided username and password params = { 'filterByFormula': f'AND(user_name = "{username}", password = "{password}")' } response = requests.get(AIRTABLE_ENDPOINT, headers=HEADERS, params=params) if response.status_code == 200: data = response.json() if data.get('records'): log_login(username) global logged_in_user logged_in_user = username return True return False #Gradio UI CIMStheme = gr.themes.Soft().set(button_primary_background_fill='#6562F4') # Initialize an empty list to store the examples ui_examples = [] school_selection = [] schools = get_schools() get_examples() with gr.Blocks(CIMStheme) as iface: with gr.Row(): with gr.Column(scale=2): gr.Image(label="Logo",value="CIMS Logo Purple.png",width=10,show_download_button=False,interactive=False,show_label=False,elem_id="logo",container=False) with gr.Column(scale=2): gr.Markdown(value="# NILI - Powered by CIMS.AI") with gr.Column(scale=2): gr.Markdown("") with gr.Row(): with gr.Column(): gr.Interface(fn=chatbot, inputs=[ gr.components.Dropdown(["Student Athlete","Parent","Athletic Director"],multiselect=False,info="Select a role.",label="User Role", ), gr.components.Dropdown(schools,multiselect=True,info="Select one or more schools. This will help set the context of your question.",label="School Context"), gr.components.Dropdown(["Summary","Detailed Analysis","Table"],multiselect=False,info="Select the desired output format.",label="Output Format"), gr.components.Textbox(lines=5, placeholder="Enter your question here", label="NIL Question")], outputs=[ gr.components.Markdown(response_label), gr.components.HTML(label="NILI Response") ], description="Ask any question about Name, Image, Likeness (NIL)", allow_flagging="manual", examples=ui_examples, cache_examples = False, flagging_options=["The response is incorrect","The response is inappropriate","The response doesn't make sense"] ) with gr.Row(): with gr.Column(): gr.HTML('
CIMS.AI Confidential 2023
') #iface.launch(auth=login_auth, auth_message= "Enter your username and password that you received from CIMS.AI. To request a login, please email 'info@cims.ai'") iface.launch(auth=('admin','cims.ai'))