import gradio as gr import os import torch import spaces from transformers import AutoModel hf_token = os.getenv("HF_TOKEN") @spaces.GPU def get_model_summary(model_name): # Check if CUDA is available and set the device accordingly device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # Load the model and move it to the selected device model = AutoModel.from_pretrained(model_name, hf_token=hf_token).to(device) # Return the model's architecture as a string return str(model) # Create the Gradio interface interface = gr.Interface(fn=get_model_summary, inputs="text", outputs="text") interface.launch()