import gradio as gr from datasets import load_dataset from PIL import Image, ImageDraw import numpy as np # Load the dataset dataset = load_dataset("dwb2023/brain-tumor-image-dataset-semantic-segmentation", split="test") # print(f"Dataset loaded successfully. Number of images: {len(dataset)}") CATEGORY_COLORS = { 1: "blue", 2: "green" } def draw_annotations(index): try: # Fetch the image and annotations from the dataset record = dataset[index] # Convert image to PIL Image if it's a numpy array if isinstance(record['image'], np.ndarray): img = Image.fromarray(record['image']) else: img = record['image'] img = img.convert("RGB") # Ensure the image is in RGB mode draw = ImageDraw.Draw(img) # Draw bounding box with color based on category bbox = record["bbox"] category_id = record["category_id"] box_color = CATEGORY_COLORS.get(category_id, "yellow") # Default to yellow if category not in mapping draw.rectangle([bbox[0], bbox[1], bbox[0] + bbox[2], bbox[1] + bbox[3]], outline=box_color, width=3) # Draw segmentation mask segmentation = record["segmentation"] for seg in segmentation: draw.polygon(seg, outline="red", width=1) # Prepare additional information area = record["area"] file_name = record["file_name"] info = f"File Name: {file_name}\n" info += f"Image ID: {record['id']}\n" info += f"Category ID: {category_id}\n" info += f"Bounding Box Color: {box_color}\n" info += f"Bounding Box: [{bbox[0]:.2f}, {bbox[1]:.2f}, {bbox[2]:.2f}, {bbox[3]:.2f}]\n" info += f"Segmentation: {segmentation}\n" info += f"Area: {area:.2f}" return img, info except Exception as e: print(f"Error processing image at index {index}: {e}") return Image.new('RGB', (300, 300), color='gray'), f"Error loading image information: {str(e)}" # Create Gradio interface with gr.Blocks() as demo: gr.Markdown("# Brain Tumor Image Dataset Viewer") gr.Markdown("## Refer to the [dwb2023/brain-tumor-image-dataset-semantic-segmentation](https://huggingface.co/datasets/dwb2023/brain-tumor-image-dataset-semantic-segmentation/viewer/default/test) dataset for more information") with gr.Row(): with gr.Column(scale=1): image_output = gr.Image(label="Annotated Image") with gr.Column(scale=1): image_index = gr.Slider(minimum=0, maximum=len(dataset)-1, step=1, value=0, label="Image ID Slider") info_output = gr.Textbox(label="Image Information", lines=10) # Update image and info when slider changes image_index.change(draw_annotations, inputs=image_index, outputs=[image_output, info_output]) # Display initial image and info demo.load(draw_annotations, inputs=image_index, outputs=[image_output, info_output]) demo.launch(debug=True)