import os from threading import Thread from typing import Iterator import gradio as gr import spaces import torch from transformers import ( AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer, LlamaTokenizer, ) MAX_MAX_NEW_TOKENS = 1024 DEFAULT_MAX_NEW_TOKENS = 50 MAX_INPUT_TOKEN_LENGTH = 512 DESCRIPTION = """\ # OpenELM-270M-Instruct -- Running on CPU This Space demonstrates [apple/OpenELM-270M-Instruct](https://huggingface.co/apple/OpenELM-270M-Instruct) by Apple. Please, check the original model card for details. For additional detail on the model, including a link to the arXiv paper, refer to the [Hugging Face Paper page for OpenELM](https://huggingface.co/papers/2404.14619) . For details on pre-training, instruction tuning, and parameter-efficient finetuning for the model refer to the [OpenELM page in the CoreNet GitHub repository](https://github.com/apple/corenet/tree/main/projects/openelm) . """ LICENSE = """
--- As a derivative work of [apple/OpenELM-270M-Instruct](https://huggingface.co/apple/OpenELM-270M-Instruct) by Apple, this demo is governed by the original [license](https://huggingface.co/apple/OpenELM-270M-Instruct/blob/main/LICENSE) Based on the [Norod78/OpenELM_3B_Demo](https://huggingface.co/spaces/Norod78/OpenELM_3B_Demo) space. """ model = AutoModelForCausalLM.from_pretrained( "apple/OpenELM-270M-Instruct", trust_remote_code=True, ) tokenizer = AutoTokenizer.from_pretrained( # "NousResearch/Llama-2-7b-hf", "meta-llama/Llama-2-7b-hf", trust_remote_code=True, tokenizer_class=LlamaTokenizer, ) if tokenizer.pad_token == None: tokenizer.pad_token = tokenizer.eos_token tokenizer.pad_token_id = tokenizer.eos_token_id model.config.pad_token_id = tokenizer.eos_token_id def generate( message: str, chat_history: list[tuple[str, str]], max_new_tokens: int = 1024, temperature: float = 0.1, top_p: float = 0.5, top_k: int = 3, repetition_penalty: float = 1.4, ) -> Iterator[str]: historical_text = "" #Prepend the entire chat history to the message with new lines between each message for user, assistant in chat_history: historical_text += f"\n{user}\n{assistant}" if len(historical_text) > 0: message = historical_text + f"\n{message}" input_ids = tokenizer([message], return_tensors="pt").input_ids if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH: input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:] gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.") input_ids = input_ids.to(model.device) streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True) generate_kwargs = dict( {"input_ids": input_ids}, streamer=streamer, max_new_tokens=max_new_tokens, do_sample=True, top_p=top_p, top_k=top_k, temperature=temperature, num_beams=1, pad_token_id = tokenizer.eos_token_id, repetition_penalty=repetition_penalty, no_repeat_ngram_size=5, early_stopping=False, ) t = Thread(target=model.generate, kwargs=generate_kwargs) t.start() outputs = [] for text in streamer: outputs.append(text) yield "".join(outputs) chat_interface = gr.ChatInterface( fn=generate, additional_inputs=[ gr.Slider( label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS, ), gr.Slider( label="Temperature", minimum=0.0, maximum=4.0, step=0.1, value=0.1, ), gr.Slider( label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.5, ), gr.Slider( label="Top-k", minimum=1, maximum=1000, step=1, value=3, ), gr.Slider( label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.4, ), ], stop_btn=None, cache_examples=False, examples=[ ["Explain quantum physics in 5 words or less:"], ["Question: What do you call a bear with no teeth?\nAnswer:"], ], ) with gr.Blocks(css="style.css") as demo: gr.Markdown(DESCRIPTION) chat_interface.render() gr.Markdown(LICENSE) if __name__ == "__main__": demo.queue(max_size=20).launch()