import math import torch from torch import nn import audiosr.latent_diffusion.modules.phoneme_encoder.commons as commons import audiosr.latent_diffusion.modules.phoneme_encoder.attentions as attentions class TextEncoder(nn.Module): def __init__( self, n_vocab, out_channels=192, hidden_channels=192, filter_channels=768, n_heads=2, n_layers=6, kernel_size=3, p_dropout=0.1, ): super().__init__() self.n_vocab = n_vocab self.out_channels = out_channels self.hidden_channels = hidden_channels self.filter_channels = filter_channels self.n_heads = n_heads self.n_layers = n_layers self.kernel_size = kernel_size self.p_dropout = p_dropout self.emb = nn.Embedding(n_vocab, hidden_channels) nn.init.normal_(self.emb.weight, 0.0, hidden_channels**-0.5) self.encoder = attentions.Encoder( hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout ) self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1) def forward(self, x, x_lengths): x = self.emb(x) * math.sqrt(self.hidden_channels) # [b, t, h] x = torch.transpose(x, 1, -1) # [b, h, t] x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to( x.dtype ) x = self.encoder(x * x_mask, x_mask) stats = self.proj(x) * x_mask m, logs = torch.split(stats, self.out_channels, dim=1) return x, m, logs, x_mask