import gradio as gr from PIL import Image import numpy as np from ultralytics import YOLO import os def handle_classify(image=None): """This function performs YOLOv8 object detection on the given image. Args: image (gr.inputs.Image, optional): Input image to detect objects on. Defaults to None. """ if not image: return "No image found" model_path = "racist2.0.pt" model = YOLO(model_path) results = model(image) result = results[0] top5 = [[result.names[class_index], str(round(result.probs.top5conf.tolist()[rank], 4)*100)+'%'] for class_index, rank in zip(result.probs.top5, range(5))] print(top5) return "\n".join(["\t".join(row) for row in top5]) inputs = [ gr.Image(type='numpy', label="Input Image"), ] outputs = gr.Textbox() title = "Racist model v2" SAMPLE_DIR = 'samples' examples = [np.array(Image.open(os.path.join(SAMPLE_DIR, path))) for path in os.listdir(SAMPLE_DIR)] yolo_app = gr.Interface( fn=handle_classify, inputs=inputs, outputs=outputs, title=title, examples=examples, cache_examples=True, ) # Launch the Gradio interface in debug mode with queue enabled yolo_app.launch(debug=True, enable_queue=True)