# coding=utf-8 # Copyright 2023 The GlotLID Authors. # Lint as: python3 # This space is built based on AMR-KELEG/ALDi space. # GlotLID Space import string import constants import pandas as pd import streamlit as st from huggingface_hub import hf_hub_download from GlotScript import get_script_predictor import matplotlib from matplotlib import pyplot as plt import fasttext import altair as alt from altair import X, Y, Scale import base64 import json import os import re import transformers from transformers import pipeline @st.cache_resource def load_sp(): sp = get_script_predictor() return sp sp = load_sp() def get_script(text): """Get the writing systems of given text. Args: text: The text to be preprocessed. Returns: The main script and list of all scripts. """ res = sp(text) main_script = res[0] if res[0] else 'Zyyy' all_scripts_dict = res[2]['details'] if all_scripts_dict: all_scripts = list(all_scripts_dict.keys()) else: all_scripts = 'Zyyy' for ws in all_scripts: if ws in ['Kana', 'Hrkt', 'Hani', 'Hira']: all_scripts.append('Jpan') all_scripts = list(set(all_scripts)) return main_script, all_scripts def preprocess_text(text): """Apply preprocessing to the given text. Args: text: Thetext to be preprocessed. Returns: The preprocessed text. """ # remove \n text = text.replace('\n', ' ') # get rid of characters that are ubiquitous replace_by = " " replacement_map = { ord(c): replace_by for c in ':•#{|}' + string.digits } text = text.translate(replacement_map) # make multiple space one space text = re.sub(r'\s+', ' ', text) # strip the text text = text.strip() return text @st.cache_data def language_names(json_path): with open(json_path, 'r') as json_file: data = json.load(json_file) return data label2name = language_names("assets/language_names.json") def get_name(label): """Get the name of language from label""" iso_3 = label.split('_')[0] name = label2name[iso_3] return name @st.cache_data def render_svg(svg): """Renders the given svg string.""" b64 = base64.b64encode(svg.encode("utf-8")).decode("utf-8") html = rf'
' c = st.container() c.write(html, unsafe_allow_html=True) @st.cache_data def render_metadata(): """Renders the metadata.""" html = r"""""" c = st.container() c.write(html, unsafe_allow_html=True) @st.cache_data def citation(): """Renders the metadata.""" _CITATION = """ @inproceedings{ kargaran2023glotlid, title={GlotLID: Language Identification for Low-Resource Languages}, author={Kargaran, Amir Hossein and Imani, Ayyoob and Yvon, Fran{\c{c}}ois and Sch{\"u}tze, Hinrich}, booktitle={The 2023 Conference on Empirical Methods in Natural Language Processing}, year={2023}, url={https://openreview.net/forum?id=dl4e3EBz5j} }""" st.code(_CITATION, language="python", line_numbers=False) @st.cache_data def convert_df(df): # IMPORTANT: Cache the conversion to prevent computation on every rerun return df.to_csv(index=None).encode("utf-8") @st.cache_resource def load_model(model_name, file_name): model_path = hf_hub_download(repo_id=model_name, filename=file_name) model = fasttext.load_model(model_path) return model @st.cache_resource def load_model_pipeline(model_name, file_name): model = pipeline("text-classification", model=model_name) return model # model_1 = load_model(constants.MODEL_NAME, "model_v1.bin") # model_2 = load_model(constants.MODEL_NAME, "model_v2.bin") # model_3 = load_model(constants.MODEL_NAME, "model_v3.bin") # openlid = load_model('laurievb/OpenLID', "model.bin") # nllb = load_model('facebook/fasttext-language-identification', "model.bin") # MODELS model_xlmr_large = load_model_pipeline('dsfsi/za-xlmrlarge-lid', "model.bin") model_serengeti = load_model_pipeline('dsfsi/za-serengeti-lid', "model.bin") model_afriberta = load_model_pipeline('dsfsi/za-afriberta-lid', "model.bin") model_afroxlmr_base = load_model_pipeline('dsfsi/za-afro-xlmr-base-lid', "model.bin") model_afrolm = load_model_pipeline('dsfsi/za-afrolm-lid', "model.bin") za_lid = load_model_pipeline('dsfsi/za-lid-bert', "model.bin") openlid = load_model('laurievb/OpenLID', "model.bin") glotlid_3 = load_model(constants.MODEL_NAME, "model_v3.bin") # @st.cache_resource def plot(label, prob): ORANGE_COLOR = "#FF8000" BLACK_COLOR = "#31333F" fig, ax = plt.subplots(figsize=(8, 1)) fig.patch.set_facecolor("none") ax.set_facecolor("none") ax.spines["left"].set_color(BLACK_COLOR) ax.spines["bottom"].set_color(BLACK_COLOR) ax.tick_params(axis="x", colors=BLACK_COLOR) ax.spines[["right", "top"]].set_visible(False) ax.barh(y=[0], width=[prob], color=ORANGE_COLOR) ax.set_xlim(0, 1) ax.set_ylim(-1, 1) ax.set_title(f"Label: {label}, Language: {get_name(label)}", color=BLACK_COLOR) ax.get_yaxis().set_visible(False) ax.set_xlabel("Confidence", color=BLACK_COLOR) st.pyplot(fig) # @st.cache_resource def plot_multiples(models, labels, probs): ORANGE_COLOR = "#FF8000" BLACK_COLOR = "#31333F" fig, ax = plt.subplots(figsize=(12, len(models))) fig.patch.set_facecolor("none") ax.set_facecolor("none") ax.spines["left"].set_color(BLACK_COLOR) ax.spines["bottom"].set_color(BLACK_COLOR) ax.tick_params(axis="x", colors=BLACK_COLOR) ax.spines[["right", "top"]].set_visible(False) # Plot bars for each model, label, and probability y_positions = range(len(models)) # Y positions for each model ax.barh(y=y_positions, width=probs, color=ORANGE_COLOR) # Add labels next to each bar for i, (prob, label) in enumerate(zip(probs, labels)): ax.text(prob + 0.01, i, f"{label} ({prob:.2f})", va='center', color=BLACK_COLOR) # Set y-ticks and labels ax.set_yticks(y_positions) ax.set_yticklabels(models, color=BLACK_COLOR) ax.set_xlim(0, 1) ax.set_xlabel("Confidence", color=BLACK_COLOR) ax.set_title("Model Predictions", color=BLACK_COLOR) st.pyplot(fig) def compute(sentences, version = 'v3'): """Computes the language probablities and labels for the given sentences. Args: sentences: A list of sentences. Returns: A list of language probablities and labels for the given sentences. """ progress_text = "Computing Language..." if version == 'xlmrlarge': model_choice = model_xlmr_large elif version == 'serengeti': model_choice = model_serengeti elif version == 'afriberta': model_choice = model_afriberta elif version == 'afroxlmrbase': model_choice = model_afroxlmr_base elif version=='afrolm': model_choice = model_afrolm elif version == 'BERT': model_choice = za_lid elif version == 'openlid-201': model_choice = openlid elif version == 'GlotLID v3': model_choice = glotlid_3 else: model_choice = [(model_xlmr_large, "xlmrlarge"),(model_serengeti,"serengeti"), (model_afriberta,"afriberta"), (model_afroxlmr_base,"afroxlmrbase"), (model_afrolm,"afrolm"), (za_lid,"BERT"), (openlid,"openlid-201"), (glotlid_3,"GlotLID v3")] my_bar = st.progress(0, text=progress_text) probs = [] labels = [] sentences = [preprocess_text(sent) for sent in sentences] for index, sent in enumerate(sentences): if type(model_choice) == list: all_models_pred = [] for model_version in model_choice: m_version = model_version[1] model = model_version[0] if m_version not in ["openlid-201", "GlotLID v3"]: output = model.predict(sent) output_label = output[index]['label'] output_prob = output[index]['score'] output_label_language = output[index]['label'] labels = labels + [output_label] probs = probs + [output_prob] my_bar.progress( min((index) / len(sentences), 1), text=progress_text, ) else: output = model.predict(sent) output_label = output[0][0].split('__')[-1].replace('_Hans', '_Hani').replace('_Hant', '_Hani') output_prob = max(min(output[1][0], 1), 0) output_label_language = output_label.split('_')[0] # script control if version in ['GlotLID v3', 'openlid-201', 'nllb-218'] and output_label_language!= 'zxx': main_script, all_scripts = get_script(sent) output_label_script = output_label.split('_')[1] if output_label_script not in all_scripts: output_label_script = main_script output_label = f"und_{output_label_script}" output_prob = 0 labels = labels + [output_label] probs = probs + [output_prob] my_bar.progress( min((index) / len(sentences), 1), text=progress_text, ) else: if version not in ["openlid-201", "GlotLID v3"]: output = model_choice.predict(sent) output_label = output[index]['label'] output_prob = output[index]['score'] output_label_language = output[index]['label'] labels = labels + [output_label] probs = probs + [output_prob] my_bar.progress( min((index) / len(sentences), 1), text=progress_text, ) else: output = model_choice.predict(sent) output_label = output[0][0].split('__')[-1].replace('_Hans', '_Hani').replace('_Hant', '_Hani') output_prob = max(min(output[1][0], 1), 0) output_label_language = output_label.split('_')[0] # script control if version in ['GlotLID v3', 'openlid-201', 'nllb-218'] and output_label_language!= 'zxx': main_script, all_scripts = get_script(sent) output_label_script = output_label.split('_')[1] if output_label_script not in all_scripts: output_label_script = main_script output_label = f"und_{output_label_script}" output_prob = 0 labels = labels + [output_label] probs = probs + [output_prob] my_bar.progress( min((index) / len(sentences), 1), text=progress_text, ) my_bar.empty() return probs, labels # st.markdown("[![Duplicate Space](https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14)](https://huggingface.co/spaces/cis-lmu/glotlid-space?duplicate=true)") # render_svg(open("assets/glotlid_logo.svg").read()) render_metadata() st.markdown("**DSFSI** Language Identification (LID) Inference Endpoint Created with **HuggingFace Spaces**.") with st.expander("More information about the space"): st.write(''' Authors: Alexandre Lacoste, Alexandra Luccioni, Victor Schmidt, Thomas Dandres ''') tab1, tab2 = st.tabs(["Input a Sentence", "Upload a File"]) with tab1: # choice = st.radio( # "Set granularity level", # ["default", "merge", "individual"], # captions=["enable both macrolanguage and its varieties (default)", "merge macrolanguage and its varieties into one label", "remove macrolanguages - only shows individual langauges"], # ) version = st.radio( "Choose model", ["xlmrlarge", "serengeti", "afriberta", "afroxlmrbase", "afrolm", "BERT", "openlid-201", "GlotLID v3", "All-Models"], captions=["za-XLMR-Large", "za-Serengeti", "za-AfriBERTa", "za-Afro-XLMR-BASE", "za-AfroLM", "za-BERT", "OpenLID", "GlotLID v3",'All-Models'], index = 4, key = 'version_tab1', horizontal = True ) sent = st.text_input( "Sentence:", placeholder="Enter a sentence.", on_change=None ) # TODO: Check if this is needed! clicked = st.button("Submit") if sent: probs, labels = compute([sent], version=version) prob = probs[0] label = labels[0] # Check if the file exists if not os.path.exists('logs.txt'): with open('logs.txt', 'w') as file: pass print(f"{sent}, {label}: {prob}") with open("logs.txt", "a") as f: f.write(f"{sent}, {label}: {prob}\n") # plot if version == "All-Models": plot_multiples(["xlmrlarge", "serengeti", "afriberta", "afroxlmrbase", "afrolm", "BERT", "OpenLID", "GlotLID v3"], labels, probs) else: plot(label, prob) with tab2: version = st.radio( "Choose model", ["xlmrlarge", "serengeti", "afriberta", "afroxlmrbase", "afrolm", "BERT","openlid-201", "GlotLID v3", "All-Models"], captions=["za-XLMR-Large", "za-Serengeti", "za-AfriBERTa", "za-Afro-XLMR-BASE", "za-AfroLM", "za-BERT", "OpenLID", "GlotLID v3", "All-Models"], index = 4, key = 'version_tab2', horizontal = True ) file = st.file_uploader("Upload a file", type=["txt"]) if file is not None: df = pd.read_csv(file, sep="¦\t¦", header=None, engine='python') df.columns = ["Sentence"] df.reset_index(drop=True, inplace=True) # TODO: Run the model df['Prob'], df["Label"] = compute(df["Sentence"].tolist(), version= version) df['Language'] = df["Label"].apply(get_name) # A horizontal rule st.markdown("""---""") chart = ( alt.Chart(df.reset_index()) .mark_area(color="darkorange", opacity=0.5) .encode( x=X(field="index", title="Sentence Index"), y=Y("Prob", scale=Scale(domain=[0, 1])), ) ) st.altair_chart(chart.interactive(), use_container_width=True) col1, col2 = st.columns([4, 1]) with col1: # Display the output st.table( df, ) with col2: # Add a download button csv = convert_df(df) st.download_button( label=":file_folder: Download predictions as CSV", data=csv, file_name="GlotLID.csv", mime="text/csv", ) # citation()