import gradio as gr import os import pyBigWig from func_gradio import predict_func,make_plots inputs = [ gr.Dropdown([str(i) for i in range(1, 23)], label='Chromosome', default='1'), gr.Dropdown(['Micro-C', 'Hi-C (ChIA-PET)'] , label='Chromatin contact map', info='One type of contact map is predicted for each time'), gr.Number(label='Region of interest (500kb for Micro-C and 1Mb for Hi-C)', info='From'), gr.Number(info='To', show_label=False), gr.File(label='Processed ATAC-seq file (in .pickle format)'), ] outputs = [ gr.Files(label='Download the results'), ] app1 = gr.Interface( fn=predict_func, inputs=inputs, outputs=outputs, title='A computational tool to use ATAC-seq to impute epigenome, transcriptome, and high-resolution chromatin contact maps', description= '
For faster inference without waiting in queue, you may duplicate the space and upgrade to GPU in settings. ' '
' '\nView Documentation ', # examples=[["11","Micro-C","10500000","11000000","./examples/atac_GM12878.pickle"], # ["11","Hi-C (ChIA-PET)","7750000","8750000","./examples/atac_GM12878.pickle"]] ) with open(os.path.abspath('data/epigenomes.txt'), 'r') as f: epis=f.read().splitlines() inputs1 = [ gr.File(label="Prediction file (in .npz format))"), gr.Markdown(value='### Visualization options'), gr.Dropdown(epis,label='Epigenome features',multiselect=True,max_choices=10,value=['CTCF','H3K4me3']), gr.Radio(choices=['Signal p-values (archsinh)','Binding probability'], label='Type of epigenomic feature data' , value='Signal p-values (archsinh)'), gr.Slider(maximum=16,label='Range of values displayed on the plots',info="Choose between 0 and 16 (contact maps)",value=4), gr.Slider(minimum=2,maximum=12,info="Choose between 2 and 12 (epigenomic feature signals)",value=4,show_label=False), gr.Slider(minimum=2,maximum=12,info="Choose between 2 and 12 (CAGE-seq)",value=8,show_label=False), ] outputs1 = gr.Plot(label='Plots') app2 = gr.Interface( fn=make_plots, inputs=inputs1, outputs=outputs1, live=True ) demo = gr.TabbedInterface([app1, app2], ["Run model", "Visualize prediction results"], theme=gr.themes.Soft()) demo.launch(debug=True)