Spaces:
Runtime error
Runtime error
File size: 9,273 Bytes
025b987 245ba2a 5a84835 025b987 5a84835 025b987 ea3924a 025b987 5a84835 025b987 ea3924a 025b987 5a84835 ea3924a 5a84835 ea3924a 5a84835 025b987 5a84835 025b987 b928aff 025b987 ea3924a 025b987 ea3924a 025b987 ea3924a 025b987 5a84835 ea3924a f3c9931 ea3924a f3c9931 ea3924a f3c9931 ea3924a f3c9931 ea3924a f3c9931 1f2286b f3c9931 1f2286b f3c9931 025b987 ea3924a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 |
import json
import os
from langchain.chat_models import ChatOpenAI
from langchain.prompts import ChatPromptTemplate
from langchain.chains import LLMChain, SequentialChain
# from validation import validate_dict_value, validate_string_value
# os.environ["OPENA"]
vacancy = """
DATA SCIENTIST - GENTIS
========================
Profile:
Min of 3 years experience as a Data Scientist
Experience in Python and SQL
Communicative very strong
Experience in coaching and supporting junior collegues
Experience in Google Cloud is a plus
Experience in Machine Learning is a plus
They offer:
An opportunity to be part of not only a fast-growing, innovative company, but one where you as a person can grow professionally as fast as the company
A close-knit and diverse team who are all ready to help, listen and give advice to each other
Training opportunities (because they don't stand still, so neither do you)
Trendy and young company where everyone can be their own
A very nice salary package and much more
Lots of remote work and flexibility, so bye bye traffic JAMS!
A renovated office with everything you could dream of full with surprises and extras
"""
resume = """
John Doe
=============================
Skills
- Python
- Tableau
- Data Visualization
- R Studio
- Machine Learning
- Statistics IABAC Certified Data Scientist with versatile experience over 1+ years in managing business, data science consulting and leading innovation projects, bringing business ideas to working real world solutions.
Being a strong advocator of augmented era, where human capabilities are enhanced by machines, Fahed is passionate about bringing business concepts in area of machine learning, AI, robotics etc., to real life solutions.Education Details January 2017 B.
Tech Computer Science & Engineering Mohali, Punjab Indo Global College of Engineering Data Science Consultant Data Science Consultant - Datamites Skill Details MACHINE LEARNING- Exprience - 13 months PYTHON- Exprience - 24 months SOLUTIONS- Exprience - 24 months DATA SCIENCE- Exprience - 24 months DATA VISUALIZATION- Exprience - 24 months Tableau- Exprience - 24 monthsCompany Details company - Datamites description -
- Analyzed and processed complex data sets using advanced querying, visualization and analytics tools.
- Responsible for loading, extracting and validation of client data.
- Worked on manipulating, cleaning & processing data using python.
- Used Tableau for data visualization.
company - Heretic Solutions Pvt Ltd description -
- Worked closely with business to identify issues and used data to propose solutions for effective decision making.
- Manipulating, cleansing & processing data using Python, Excel and R.
- Analyzed raw data, drawing conclusions & developing recommendations.
- Used machine learning tools and statistical techniques to produce solutions to problems.
"""
llm = ChatOpenAI(temperature=0.0, openai_api_key=os.environ["OPENAI"])
def create_intro(vacancy=vacancy, resume=resume):
template_vacancy_get_skills = """
Can you generate me a list of the skills that a candidate is supposed to have for the below vacancy delimited by three backticks.
If you do not know if skills are available mention that you do not know and do not make up an answer.
Mention the skills in 1 to maximum three words for each skill. Return the skills as a JSON list.
```
{vacancy}
```
"""
prompt_vacancy_get_skills = ChatPromptTemplate.from_template(
template=template_vacancy_get_skills
)
vacancy_skills = LLMChain(
llm=llm, prompt=prompt_vacancy_get_skills, output_key="vacancy_skills"
)
template_resume_check_skills = """
```
{vacancy_skills}
```
Based on the above list of skills required by a vacancy delimited by backticks,
Can you create a JSON object based on the below keys each starting with '-', with respect to the resume below delimited by three backticks?
- "skills_present": <list the skills present. If no skills are present return an empty list, do not make up an answer. >
- "skills_not_present": <list the skills not present. If all skills are present return an empty list, do not make up an answer.>
- "score": <calculate a percentage of the number of skills present with respect to the total skills requested>
```
{resume}
```
"""
prompt_resume_check_skills = ChatPromptTemplate.from_template(
template=template_resume_check_skills
)
resume_skills = LLMChain(
llm=llm, prompt=prompt_resume_check_skills, output_key="resume_skills"
)
template_resume_past_experiences = """
Can you generate me a list of the past work experiences that the candidate has based on the resume below enclosed by three backticks.
Mention the experiences in one sentence of medium length. Return the experiences as a JSON list.
```
{resume}
```
"""
prompt_resume_past_experiences = ChatPromptTemplate.from_template(
template=template_resume_past_experiences
)
past_experiences = LLMChain(
llm=llm, prompt=prompt_resume_past_experiences, output_key="past_experiences"
)
template_vacancy_check_past_experiences = """
```
{past_experiences}
```
Based on the above list of past experiences by a vacancy delimited by backticks,
Can you create a JSON object based on the below keys each starting with '-', with respect to the vacancy below delimited by three backticks?
- "relevant_experiences": <list the relevant experiences. If no experiences are relevant return an empty list, do not make up an answer. >
- "irrelevant_experiences": <list the irrelevant experiences. If all experiences are relevant return an empty list, do not make up an answer.>
- "score": <calculate a percentage of the number of skills present with respect to the total skills requested>
```
{resume}
```
"""
prompt_vacancy_check_past_experiences = ChatPromptTemplate.from_template(
template=template_vacancy_check_past_experiences
)
check_past_experiences = LLMChain(
llm=llm,
prompt=prompt_vacancy_check_past_experiences,
output_key="check_past_experiences",
)
template_introduction_email = """
You are a recruitment specialist that tries to place the right profiles for the right job.
I have a vacancy below the delimiter <VACANCY> and ends with </VACANCY>
and I have a candidate its resume below the delimiter <RESUME> and it ends with </RESUME>.
<VACANCY>
{vacancy}
</VACANCY>
<RESUME>
{resume}
</RESUME>
Can you fill in the introduction below and only return as answer this introduction?
- Role: < the role of the vacancy >
- Candidate: < name of the candidate >
- Education: < name the education of the candidate >
- Experience: < name the 2 most relevant experiences from the candidate for this vacancy. Get them from the "relevant_experiences" key of the JSON object {past_experiences}. If there us no relevant experience, leave this empty. Do not make up an answer or get them from the irrelevant experiences. >
- Skills: print here a comma seperated list of the "skills_present" key of the JSON object {resume_skills}
"""
prompt_introduction_email = ChatPromptTemplate.from_template(
template=template_introduction_email
)
introduction_email = LLMChain(
llm=llm, prompt=prompt_introduction_email, output_key="introduction_email"
)
match_resume_vacancy_skills_chain = SequentialChain(
chains=[
vacancy_skills,
resume_skills,
past_experiences,
check_past_experiences,
introduction_email,
],
input_variables=["vacancy", "resume"],
output_variables=[
"vacancy_skills",
"resume_skills",
"past_experiences",
"check_past_experiences",
"introduction_email",
],
verbose=False,
)
result = match_resume_vacancy_skills_chain({"vacancy": vacancy, "resume": resume})
print(result)
resume_skills = json.loads(result["resume_skills"])
relevant_skills = len(resume_skills["skills_present"])
total_skills = len(
resume_skills["skills_present"] + resume_skills["skills_not_present"]
)
score_skills = round(100.0 * (relevant_skills / total_skills), 2)
check_past_experiences = json.loads(result["check_past_experiences"])
relevant_experiences = len(check_past_experiences["relevant_experiences"])
total_experiences = len(
check_past_experiences["relevant_experiences"]
+ check_past_experiences["irrelevant_experiences"]
)
score_experiences = round(100.0 * (relevant_experiences / total_experiences), 2)
new_line = "\n"
score = f"""
Skills (Score: {score_skills}%)
Relevant Skills: {",".join(resume_skills["skills_present"])}
Not Relevant Skills: {",".join(resume_skills["skills_not_present"])}
"""
return result["introduction_email"], score
if __name__ == "__main__":
create_intro(vacancy=vacancy, resume=resume)
|