from torch import nn from .RNN import SequenceEncoder, Im2Seq, Im2Im from .RecMv1_enhance import MobileNetV1Enhance from .RecCTCHead import CTCHead backbone_dict = {"MobileNetV1Enhance":MobileNetV1Enhance} neck_dict = {'SequenceEncoder': SequenceEncoder, 'Im2Seq': Im2Seq,'None':Im2Im} head_dict = {'CTCHead':CTCHead} class RecModel(nn.Module): def __init__(self, config): super().__init__() assert 'in_channels' in config, 'in_channels must in model config' backbone_type = config.backbone.pop('type') assert backbone_type in backbone_dict, f'backbone.type must in {backbone_dict}' self.backbone = backbone_dict[backbone_type](config.in_channels, **config.backbone) neck_type = config.neck.pop('type') assert neck_type in neck_dict, f'neck.type must in {neck_dict}' self.neck = neck_dict[neck_type](self.backbone.out_channels, **config.neck) head_type = config.head.pop('type') assert head_type in head_dict, f'head.type must in {head_dict}' self.head = head_dict[head_type](self.neck.out_channels, **config.head) self.name = f'RecModel_{backbone_type}_{neck_type}_{head_type}' def load_3rd_state_dict(self, _3rd_name, _state): self.backbone.load_3rd_state_dict(_3rd_name, _state) self.neck.load_3rd_state_dict(_3rd_name, _state) self.head.load_3rd_state_dict(_3rd_name, _state) def forward(self, x): x = self.backbone(x) x = self.neck(x) x = self.head(x) return x def encode(self, x): x = self.backbone(x) x = self.neck(x) x = self.head.ctc_encoder(x) return x