#!/usr/bin/env python from __future__ import annotations import enum import gradio as gr from huggingface_hub import HfApi from inference import InferencePipeline from utils import find_exp_dirs SAMPLE_MODEL_IDS = [ 'koala2/dreambooth-dog-v2', 'lambdalabs/dreambooth-avatar', ] class ModelSource(enum.Enum): SAMPLE = 'Sample' HUB_LIB = 'Hub (dreambooth-library)' LOCAL = 'Local' class InferenceUtil: def __init__(self, hf_token: str | None): self.hf_token = hf_token @staticmethod def load_sample_model_list(): return gr.update(choices=SAMPLE_MODEL_IDS, value=SAMPLE_MODEL_IDS[0]) def load_hub_model_list(self) -> dict: api = HfApi(token=self.hf_token) choices = [ info.modelId for info in api.list_models(author='dreambooth-library') ] return gr.update(choices=choices, value=choices[0] if choices else None) @staticmethod def load_local_model_list() -> dict: choices = find_exp_dirs() return gr.update(choices=choices, value=choices[0] if choices else None) def reload_model_list(self, model_source: str) -> dict: if model_source == ModelSource.SAMPLE.value: return self.load_sample_model_list() elif model_source == ModelSource.HUB_LIB.value: return self.load_hub_model_list() elif model_source == ModelSource.LOCAL.value: return self.load_local_model_list() else: raise ValueError def load_model_info(self, model_id: str) -> tuple[str, str]: try: card = InferencePipeline.get_model_card(model_id, self.hf_token) except Exception: return '' instance_prompt = getattr(card.data, 'instance_prompt', '') return instance_prompt def reload_model_list_and_update_model_info( self, model_source: str ) -> tuple[dict, str, str]: model_list_update = self.reload_model_list(model_source) model_list = model_list_update['choices'] model_info = self.load_model_info(model_list[0] if model_list else '') return model_list_update, *model_info def create_inference_demo(pipe: InferencePipeline, hf_token: str | None = None) -> gr.Blocks: app = InferenceUtil(hf_token) with gr.Blocks() as demo: with gr.Row(): with gr.Column(): with gr.Box(): model_source = gr.Radio( label='Model Source', choices=[_.value for _ in ModelSource], value=ModelSource.SAMPLE.value) reload_button = gr.Button('Reload Model List') model_id = gr.Dropdown(label='Model ID', choices=SAMPLE_MODEL_IDS, value=SAMPLE_MODEL_IDS[0]) with gr.Accordion( label= 'Model info (Base model and instance prompt used for training)', open=False): with gr.Row(): instance_prompt_used_for_training = gr.Text( label='Instance prompt', interactive=False) prompt = gr.Textbox( label='Prompt', max_lines=1, placeholder='Example: "A picture of a {}dog in a bucket"' ) seed = gr.Slider(label='Seed', minimum=0, maximum=100000, step=1, value=0) with gr.Accordion('Other Parameters', open=False): num_steps = gr.Slider(label='Number of Steps', minimum=0, maximum=100, step=1, value=25) guidance_scale = gr.Slider(label='CFG Scale', minimum=0, maximum=50, step=0.1, value=7.5) run_button = gr.Button('Generate') gr.Markdown(''' - After training, you can press "Reload Model List" button to load your trained model names. ''') with gr.Column(): result = gr.Image(label='Result') model_source.change( fn=app.reload_model_list_and_update_model_info, inputs=model_source, outputs=[ model_id, instance_prompt_used_for_training, ]) reload_button.click( fn=app.reload_model_list_and_update_model_info, inputs=model_source, outputs=[ model_id, instance_prompt_used_for_training, ]) model_id.change(fn=app.load_model_info, inputs=model_id, outputs=[ instance_prompt_used_for_training, ]) inputs = [ model_id, prompt, seed, num_steps, guidance_scale, ] prompt.submit(fn=pipe.run, inputs=inputs, outputs=result) run_button.click(fn=pipe.run, inputs=inputs, outputs=result) return demo if __name__ == '__main__': import os hf_token = os.getenv('HF_TOKEN') pipe = InferencePipeline(hf_token) demo = create_inference_demo(pipe, hf_token) demo.queue(max_size=10).launch(share=False)