# Script for converting a HF Diffusers saved pipeline to a Stable Diffusion checkpoint. # *Only* converts the UNet, and Text Encoder. # Does not convert optimizer state or any other thing. import argparse import os.path as osp import re import torch from safetensors.torch import load_file, save_file # =================# # UNet Conversion # # =================# print ('Initializing the conversion map') unet_conversion_map = [ # (ModelScope, HF Diffusers) # from Vanilla ModelScope/StableDiffusion ("time_embed.0.weight", "time_embedding.linear_1.weight"), ("time_embed.0.bias", "time_embedding.linear_1.bias"), ("time_embed.2.weight", "time_embedding.linear_2.weight"), ("time_embed.2.bias", "time_embedding.linear_2.bias"), # from Vanilla ModelScope/StableDiffusion ("input_blocks.0.0.weight", "conv_in.weight"), ("input_blocks.0.0.bias", "conv_in.bias"), # from Vanilla ModelScope/StableDiffusion ("out.0.weight", "conv_norm_out.weight"), ("out.0.bias", "conv_norm_out.bias"), ("out.2.weight", "conv_out.weight"), ("out.2.bias", "conv_out.bias"), ] unet_conversion_map_resnet = [ # (ModelScope, HF Diffusers) # SD ("in_layers.0", "norm1"), ("in_layers.2", "conv1"), ("out_layers.0", "norm2"), ("out_layers.3", "conv2"), ("emb_layers.1", "time_emb_proj"), ("skip_connection", "conv_shortcut"), # MS #("temopral_conv", "temp_convs"), # ROFL, they have a typo here --kabachuha ] unet_conversion_map_layer = [] # Convert input TemporalTransformer unet_conversion_map_layer.append(('input_blocks.0.1', 'transformer_in')) # Reference for the default settings # "model_cfg": { # "unet_in_dim": 4, # "unet_dim": 320, # "unet_y_dim": 768, # "unet_context_dim": 1024, # "unet_out_dim": 4, # "unet_dim_mult": [1, 2, 4, 4], # "unet_num_heads": 8, # "unet_head_dim": 64, # "unet_res_blocks": 2, # "unet_attn_scales": [1, 0.5, 0.25], # "unet_dropout": 0.1, # "temporal_attention": "True", # "num_timesteps": 1000, # "mean_type": "eps", # "var_type": "fixed_small", # "loss_type": "mse" # } # hardcoded number of downblocks and resnets/attentions... # would need smarter logic for other networks. for i in range(4): # loop over downblocks/upblocks for j in range(2): # loop over resnets/attentions for downblocks # Spacial SD stuff hf_down_res_prefix = f"down_blocks.{i}.resnets.{j}." sd_down_res_prefix = f"input_blocks.{3*i + j + 1}.0." unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix)) if i < 3: # no attention layers in down_blocks.3 hf_down_atn_prefix = f"down_blocks.{i}.attentions.{j}." sd_down_atn_prefix = f"input_blocks.{3*i + j + 1}.1." unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix)) # Temporal MS stuff hf_down_res_prefix = f"down_blocks.{i}.temp_convs.{j}." sd_down_res_prefix = f"input_blocks.{3*i + j + 1}.0.temopral_conv." unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix)) if i < 3: # no attention layers in down_blocks.3 hf_down_atn_prefix = f"down_blocks.{i}.temp_attentions.{j}." sd_down_atn_prefix = f"input_blocks.{3*i + j + 1}.2." unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix)) for j in range(3): # loop over resnets/attentions for upblocks # Spacial SD stuff hf_up_res_prefix = f"up_blocks.{i}.resnets.{j}." sd_up_res_prefix = f"output_blocks.{3*i + j}.0." unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix)) if i > 0: # no attention layers in up_blocks.0 hf_up_atn_prefix = f"up_blocks.{i}.attentions.{j}." sd_up_atn_prefix = f"output_blocks.{3*i + j}.1." unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix)) # loop over resnets/attentions for upblocks hf_up_res_prefix = f"up_blocks.{i}.temp_convs.{j}." sd_up_res_prefix = f"output_blocks.{3*i + j}.0.temopral_conv." unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix)) if i > 0: # no attention layers in up_blocks.0 hf_up_atn_prefix = f"up_blocks.{i}.temp_attentions.{j}." sd_up_atn_prefix = f"output_blocks.{3*i + j}.2." unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix)) # Up/Downsamplers are 2D, so don't need to touch them if i < 3: # no downsample in down_blocks.3 hf_downsample_prefix = f"down_blocks.{i}.downsamplers.0.conv." sd_downsample_prefix = f"input_blocks.{3*(i+1)}.op." unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix)) # no upsample in up_blocks.3 hf_upsample_prefix = f"up_blocks.{i}.upsamplers.0." sd_upsample_prefix = f"output_blocks.{3*i + 2}.{1 if i == 0 else 3}." unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix)) # Handle the middle block # Spacial hf_mid_atn_prefix = "mid_block.attentions.0." sd_mid_atn_prefix = "middle_block.1." unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix)) for j in range(2): hf_mid_res_prefix = f"mid_block.resnets.{j}." sd_mid_res_prefix = f"middle_block.{3*j}." unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix)) # Temporal hf_mid_atn_prefix = "mid_block.temp_attentions.0." sd_mid_atn_prefix = "middle_block.2." unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix)) for j in range(2): hf_mid_res_prefix = f"mid_block.temp_convs.{j}." sd_mid_res_prefix = f"middle_block.{3*j}.temopral_conv." unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix)) # The pipeline def convert_unet_state_dict(unet_state_dict, strict_mapping=False): print ('Converting the UNET') # buyer beware: this is a *brittle* function, # and correct output requires that all of these pieces interact in # the exact order in which I have arranged them. mapping = {k: k for k in unet_state_dict.keys()} for sd_name, hf_name in unet_conversion_map: if strict_mapping: if hf_name in mapping: mapping[hf_name] = sd_name else: mapping[hf_name] = sd_name for k, v in mapping.items(): if "resnets" in k: for sd_part, hf_part in unet_conversion_map_resnet: v = v.replace(hf_part, sd_part) mapping[k] = v # elif "temp_convs" in k: # for sd_part, hf_part in unet_conversion_map_resnet: # v = v.replace(hf_part, sd_part) # mapping[k] = v for k, v in mapping.items(): for sd_part, hf_part in unet_conversion_map_layer: v = v.replace(hf_part, sd_part) mapping[k] = v # there must be a pattern, but I don't want to bother atm do_not_unsqueeze = [f'output_blocks.{i}.1.proj_out.weight' for i in range(3, 12)] + [f'output_blocks.{i}.1.proj_in.weight' for i in range(3, 12)] + ['middle_block.1.proj_in.weight', 'middle_block.1.proj_out.weight'] + [f'input_blocks.{i}.1.proj_out.weight' for i in [1, 2, 4, 5, 7, 8]] + [f'input_blocks.{i}.1.proj_in.weight' for i in [1, 2, 4, 5, 7, 8]] print (do_not_unsqueeze) new_state_dict = {v: (unet_state_dict[k].unsqueeze(-1) if ('proj_' in k and ('bias' not in k) and (k not in do_not_unsqueeze)) else unet_state_dict[k]) for k, v in mapping.items()} # HACK: idk why the hell it does not work with list comprehension for k, v in new_state_dict.items(): has_k = False for n in do_not_unsqueeze: if k == n: has_k = True if has_k: v = v.squeeze(-1) new_state_dict[k] = v return new_state_dict # TODO: VAE conversion. We doesn't train it in the most cases, but may be handy for the future --kabachuha # =========================# # Text Encoder Conversion # # =========================# # IT IS THE SAME CLIP ENCODER, SO JUST COPYPASTING IT --kabachuha # =========================# # Text Encoder Conversion # # =========================# textenc_conversion_lst = [ # (stable-diffusion, HF Diffusers) ("resblocks.", "text_model.encoder.layers."), ("ln_1", "layer_norm1"), ("ln_2", "layer_norm2"), (".c_fc.", ".fc1."), (".c_proj.", ".fc2."), (".attn", ".self_attn"), ("ln_final.", "transformer.text_model.final_layer_norm."), ("token_embedding.weight", "transformer.text_model.embeddings.token_embedding.weight"), ("positional_embedding", "transformer.text_model.embeddings.position_embedding.weight"), ] protected = {re.escape(x[1]): x[0] for x in textenc_conversion_lst} textenc_pattern = re.compile("|".join(protected.keys())) # Ordering is from https://github.com/pytorch/pytorch/blob/master/test/cpp/api/modules.cpp code2idx = {"q": 0, "k": 1, "v": 2} def convert_text_enc_state_dict_v20(text_enc_dict): #print ('Converting the text encoder') new_state_dict = {} capture_qkv_weight = {} capture_qkv_bias = {} for k, v in text_enc_dict.items(): if ( k.endswith(".self_attn.q_proj.weight") or k.endswith(".self_attn.k_proj.weight") or k.endswith(".self_attn.v_proj.weight") ): k_pre = k[: -len(".q_proj.weight")] k_code = k[-len("q_proj.weight")] if k_pre not in capture_qkv_weight: capture_qkv_weight[k_pre] = [None, None, None] capture_qkv_weight[k_pre][code2idx[k_code]] = v continue if ( k.endswith(".self_attn.q_proj.bias") or k.endswith(".self_attn.k_proj.bias") or k.endswith(".self_attn.v_proj.bias") ): k_pre = k[: -len(".q_proj.bias")] k_code = k[-len("q_proj.bias")] if k_pre not in capture_qkv_bias: capture_qkv_bias[k_pre] = [None, None, None] capture_qkv_bias[k_pre][code2idx[k_code]] = v continue relabelled_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], k) new_state_dict[relabelled_key] = v for k_pre, tensors in capture_qkv_weight.items(): if None in tensors: raise Exception("CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing") relabelled_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], k_pre) new_state_dict[relabelled_key + ".in_proj_weight"] = torch.cat(tensors) for k_pre, tensors in capture_qkv_bias.items(): if None in tensors: raise Exception("CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing") relabelled_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], k_pre) new_state_dict[relabelled_key + ".in_proj_bias"] = torch.cat(tensors) return new_state_dict def convert_text_enc_state_dict(text_enc_dict): return text_enc_dict textenc_conversion_lst = [ # (stable-diffusion, HF Diffusers) ("resblocks.", "text_model.encoder.layers."), ("ln_1", "layer_norm1"), ("ln_2", "layer_norm2"), (".c_fc.", ".fc1."), (".c_proj.", ".fc2."), (".attn", ".self_attn"), ("ln_final.", "transformer.text_model.final_layer_norm."), ("token_embedding.weight", "transformer.text_model.embeddings.token_embedding.weight"), ("positional_embedding", "transformer.text_model.embeddings.position_embedding.weight"), ] protected = {re.escape(x[1]): x[0] for x in textenc_conversion_lst} textenc_pattern = re.compile("|".join(protected.keys())) # Ordering is from https://github.com/pytorch/pytorch/blob/master/test/cpp/api/modules.cpp code2idx = {"q": 0, "k": 1, "v": 2} def convert_text_enc_state_dict_v20(text_enc_dict): new_state_dict = {} capture_qkv_weight = {} capture_qkv_bias = {} for k, v in text_enc_dict.items(): if ( k.endswith(".self_attn.q_proj.weight") or k.endswith(".self_attn.k_proj.weight") or k.endswith(".self_attn.v_proj.weight") ): k_pre = k[: -len(".q_proj.weight")] k_code = k[-len("q_proj.weight")] if k_pre not in capture_qkv_weight: capture_qkv_weight[k_pre] = [None, None, None] capture_qkv_weight[k_pre][code2idx[k_code]] = v continue if ( k.endswith(".self_attn.q_proj.bias") or k.endswith(".self_attn.k_proj.bias") or k.endswith(".self_attn.v_proj.bias") ): k_pre = k[: -len(".q_proj.bias")] k_code = k[-len("q_proj.bias")] if k_pre not in capture_qkv_bias: capture_qkv_bias[k_pre] = [None, None, None] capture_qkv_bias[k_pre][code2idx[k_code]] = v continue relabelled_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], k) new_state_dict[relabelled_key] = v for k_pre, tensors in capture_qkv_weight.items(): if None in tensors: raise Exception("CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing") relabelled_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], k_pre) new_state_dict[relabelled_key + ".in_proj_weight"] = torch.cat(tensors) for k_pre, tensors in capture_qkv_bias.items(): if None in tensors: raise Exception("CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing") relabelled_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], k_pre) new_state_dict[relabelled_key + ".in_proj_bias"] = torch.cat(tensors) return new_state_dict def convert_text_enc_state_dict(text_enc_dict): return text_enc_dict if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--model_path", default=None, type=str, required=True, help="Path to the model to convert.") parser.add_argument("--checkpoint_path", default=None, type=str, required=True, help="Path to the output model.") parser.add_argument("--clip_checkpoint_path", default=None, type=str, help="Path to the output CLIP model.") parser.add_argument("--half", action="store_true", help="Save weights in half precision.") parser.add_argument( "--use_safetensors", action="store_true", help="Save weights use safetensors, default is ckpt." ) args = parser.parse_args() assert args.model_path is not None, "Must provide a model path!" assert args.checkpoint_path is not None, "Must provide a checkpoint path!" assert args.clip_checkpoint_path is not None, "Must provide a CLIP checkpoint path!" # Path for safetensors unet_path = osp.join(args.model_path, "unet", "diffusion_pytorch_model.safetensors") #vae_path = osp.join(args.model_path, "vae", "diffusion_pytorch_model.safetensors") text_enc_path = osp.join(args.model_path, "text_encoder", "model.safetensors") # Load models from safetensors if it exists, if it doesn't pytorch if osp.exists(unet_path): unet_state_dict = load_file(unet_path, device="cpu") else: unet_path = osp.join(args.model_path, "unet", "diffusion_pytorch_model.bin") unet_state_dict = torch.load(unet_path, map_location="cpu") # if osp.exists(vae_path): # vae_state_dict = load_file(vae_path, device="cpu") # else: # vae_path = osp.join(args.model_path, "vae", "diffusion_pytorch_model.bin") # vae_state_dict = torch.load(vae_path, map_location="cpu") if osp.exists(text_enc_path): text_enc_dict = load_file(text_enc_path, device="cpu") else: text_enc_path = osp.join(args.model_path, "text_encoder", "pytorch_model.bin") text_enc_dict = torch.load(text_enc_path, map_location="cpu") # Convert the UNet model unet_state_dict = convert_unet_state_dict(unet_state_dict) #unet_state_dict = {"model.diffusion_model." + k: v for k, v in unet_state_dict.items()} # Convert the VAE model # vae_state_dict = convert_vae_state_dict(vae_state_dict) # vae_state_dict = {"first_stage_model." + k: v for k, v in vae_state_dict.items()} # Easiest way to identify v2.0 model seems to be that the text encoder (OpenCLIP) is deeper is_v20_model = "text_model.encoder.layers.22.layer_norm2.bias" in text_enc_dict if is_v20_model: # MODELSCOPE always uses the 2.X encoder, btw --kabachuha # Need to add the tag 'transformer' in advance so we can knock it out from the final layer-norm text_enc_dict = {"transformer." + k: v for k, v in text_enc_dict.items()} text_enc_dict = convert_text_enc_state_dict_v20(text_enc_dict) #text_enc_dict = {"cond_stage_model.model." + k: v for k, v in text_enc_dict.items()} else: text_enc_dict = convert_text_enc_state_dict(text_enc_dict) #text_enc_dict = {"cond_stage_model.transformer." + k: v for k, v in text_enc_dict.items()} # DON'T PUT TOGETHER FOR THE NEW CHECKPOINT AS MODELSCOPE USES THEM IN THE SPLITTED FORM --kabachuha # Save CLIP and the Diffusion model to their own files #state_dict = {**unet_state_dict, **vae_state_dict, **text_enc_dict} print ('Saving UNET') state_dict = {**unet_state_dict} if args.half: state_dict = {k: v.half() for k, v in state_dict.items()} if args.use_safetensors: save_file(state_dict, args.checkpoint_path) else: #state_dict = {"state_dict": state_dict} torch.save(state_dict, args.checkpoint_path) # TODO: CLIP conversion doesn't work atm # print ('Saving CLIP') # state_dict = {**text_enc_dict} # if args.half: # state_dict = {k: v.half() for k, v in state_dict.items()} # if args.use_safetensors: # save_file(state_dict, args.checkpoint_path) # else: # #state_dict = {"state_dict": state_dict} # torch.save(state_dict, args.clip_checkpoint_path) print('Operation successfull')