# coding: utf8 import gradio as gr from transformers import pipeline pipeline = pipeline(task="image-classification", model="dqnguyen/vit-base_diabetic_ulcer_image_classification") def predict(image): predictions = pipeline(image) #return {p["label"]: p["score"] for p in predictions} results = {} for p in predictions: if p["label"] == "MoHat": results["Granulation tissue (Mô hạt)"] = p["score"] elif p["label"] == "MoGiaMacNhiemKhuan": results["Pseudomembranous tissue with a bacterial infection (Mô giả mạc nhiễm khuẩn)"] = p["score"] elif p["label"] == "MoHoaiTu": results["Necrotic tissue (Mô hoại tử)"] = p["score"] return results gr.Interface( predict, inputs=gr.inputs.Image(label="Upload an image (Tải một bức ảnh vét loét tiểu đường)", type="filepath"), outputs=gr.outputs.Label(num_top_classes=5), title="Diabetic Ulcer Image Classification", ).launch()