import sys from typing import List import traceback import os import base64 import logging logging.basicConfig(level=logging.INFO) import modules.cloud_logging import tokenizers import torch from transformers import AutoModelForCausalLM, AutoTokenizer import json import pprint # needs to be imported *before* transformers if os.path.exists('debug'): BIG_MODEL = False CUDA = False else: BIG_MODEL = True CUDA = True # from flask import Flask, request, render_template # from flask_cors import CORS # app = Flask(__name__, static_folder='static') # app.config['TEMPLATES_AUTO_RELOAD'] = Tru # CORS(app, resources= { # r"/generate": {"origins": origins}, # r"/infill": {"origins": origins}, # }) # origins=[f"http://localhost:{PORT}", "https://huggingface.co", "https://hf.space"] PORT = 7860 VERBOSE = False if os.path.exists('unlock'): MAX_LENGTH = 2048 else: MAX_LENGTH = 256+64 TRUNCATION_MESSAGE = f'warning: This demo is limited to {MAX_LENGTH} tokens in the document for efficiency.' if BIG_MODEL: model_name = "facebook/incoder-6B" kwargs = dict( revision="float16", torch_dtype=torch.float16, low_cpu_mem_usage=True, ) else: model_name = "facebook/incoder-1B" kwargs = dict() from fastapi import FastAPI, Request from fastapi.staticfiles import StaticFiles from fastapi.responses import FileResponse, StreamingResponse app = FastAPI(docs_url=None, redoc_url=None) app.mount("/static", StaticFiles(directory="static"), name="static") logging.info("loading model") model = AutoModelForCausalLM.from_pretrained(model_name, **kwargs) logging.info("loading tokenizer") tokenizer = AutoTokenizer.from_pretrained(model_name) logging.info("loading complete") if CUDA: model = model.half().cuda() BOS = "<|endoftext|>" EOM = "<|endofmask|>" def make_sentinel(i): return f"<|mask:{i}|>" SPECIAL_TOKENS = [make_sentinel(i) for i in range(256)] + [EOM] def generate(input, length_limit=None, temperature=None): input_ids = tokenizer(input, return_tensors="pt").input_ids if CUDA: input_ids = input_ids.cuda() current_length = input_ids.flatten().size(0) max_length = length_limit + current_length truncated = False if max_length > MAX_LENGTH: max_length = MAX_LENGTH truncated = True if max_length == current_length: return input, True output = model.generate(input_ids=input_ids, do_sample=True, top_p=0.95, temperature=temperature, max_length=max_length) detok_hypo_str = tokenizer.decode(output.flatten()) if detok_hypo_str.startswith(BOS): detok_hypo_str = detok_hypo_str[len(BOS):] return detok_hypo_str, truncated def infill(parts: List[str], length_limit=None, temperature=None, extra_sentinel=False, max_retries=1): assert isinstance(parts, list) retries_attempted = 0 done = False while (not done) and (retries_attempted < max_retries): any_truncated = False retries_attempted += 1 if VERBOSE: logging.info(f"retry {retries_attempted}") if len(parts) == 1: prompt = parts[0] else: prompt = "" # encode parts separated by sentinel for sentinel_ix, part in enumerate(parts): prompt += part if extra_sentinel or (sentinel_ix < len(parts) - 1): prompt += make_sentinel(sentinel_ix) # prompt += TokenizerWrapper.make_sentinel(0) infills = [] complete = [] done = True for sentinel_ix, part in enumerate(parts[:-1]): complete.append(part) prompt += make_sentinel(sentinel_ix) completion, this_truncated = generate(prompt, length_limit, temperature) any_truncated |= this_truncated completion = completion[len(prompt):] if EOM not in completion: if VERBOSE: logging.info(f"warning: {EOM} not found") completion += EOM # TODO: break inner loop here done = False completion = completion[:completion.index(EOM) + len(EOM)] infilled = completion[:-len(EOM)] infills.append(infilled) complete.append(infilled) prompt += completion complete.append(parts[-1]) text = ''.join(complete) if VERBOSE: logging.info("generated text:") logging.info(prompt) logging.info() logging.info("parts:") logging.info(parts) logging.info() logging.info("infills:") logging.info(infills) logging.info() logging.info("restitched text:") logging.info(text) logging.info() return { 'text': text, 'parts': parts, 'infills': infills, 'retries_attempted': retries_attempted, 'truncated': any_truncated, } @app.head("/") @app.get("/") def index() -> FileResponse: return FileResponse(path="static/index.html", media_type="text/html") @app.get('/generate') # async def generate_maybe(request: Request): async def generate_maybe(info: str): # form = await info.json() # form = await request.json() # info is a base64-encoded, url-escaped json string (since GET doesn't support a body, and POST leads to CORS issues) # fix padding, following https://stackoverflow.com/a/9956217/1319683 info = base64.urlsafe_b64decode(info + '=' * (4 - len(info) % 4)).decode('utf-8') form = json.loads(info) # print(form) prompt = form['prompt'] length_limit = int(form['length']) temperature = float(form['temperature']) logging.info(json.dumps({ 'length': length_limit, 'temperature': temperature, 'prompt': prompt, })) try: generation, truncated = generate(prompt, length_limit, temperature) if truncated: message = TRUNCATION_MESSAGE else: message = '' return {'result': 'success', 'type': 'generate', 'prompt': prompt, 'text': generation, 'message': message} except Exception as e: traceback.print_exception(*sys.exc_info()) logging.error(e) return {'result': 'error', 'type': 'generate', 'prompt': prompt, 'message': f'Error: {e}.'} @app.get('/infill') # async def infill_maybe(request: Request): async def infill_maybe(info: str): # form = await info.json() # form = await request.json() # info is a base64-encoded, url-escaped json string (since GET doesn't support a body, and POST leads to CORS issues) # fix padding, following https://stackoverflow.com/a/9956217/1319683 info = base64.urlsafe_b64decode(info + '=' * (4 - len(info) % 4)).decode('utf-8') form = json.loads(info) length_limit = int(form['length']) temperature = float(form['temperature']) max_retries = 1 extra_sentinel = True logging.info(json.dumps({ 'length': length_limit, 'temperature': temperature, 'parts_joined': ''.join(form['parts']), })) try: if len(form['parts']) > 4: return {'result': 'error', 'text': ''.join(form['parts']), 'type': 'infill', 'message': f"error: Can't use more than 3 tokens in this demo (for efficiency)."} generation = infill(form['parts'], length_limit, temperature, extra_sentinel=extra_sentinel, max_retries=max_retries) generation['result'] = 'success' generation['type'] = 'infill' if generation['truncated']: generation['message'] = TRUNCATION_MESSAGE else: generation['message'] = '' return generation # return {'result': 'success', 'prefix': prefix, 'suffix': suffix, 'text': generation['text']} except Exception as e: traceback.print_exception(*sys.exc_info()) logging.error(e) return {'result': 'error', 'type': 'infill', 'message': f'Error: {e}.'} if __name__ == "__main__": app.run(host='0.0.0.0', port=PORT, threaded=False)