import gradio as gr from transformers import pipeline # Load a pre-trained language model generator = pipeline("text-generation", model="gpt2") def generate_text(prompt): return generator(prompt, max_length=50, num_return_sequences=1)[0]["generated_text"] # Gradio interface iface = gr.Interface( fn=generate_text, inputs="text", outputs="text", title="LLM Text Generator using demo", description="Generate text using a pre-trained GPT-2 model." ) if __name__ == "__main__": iface.launch()