import cv2 from PIL import Image import glob import os from basicsr.archs.rrdbnet_arch import RRDBNet from basicsr.utils.download_util import load_file_from_url from realesrgan import RealESRGANer from realesrgan.archs.srvgg_arch import SRVGGNetCompact def realEsrgan(model_name="RealESRGAN_x4plus_anime_6B", model_path = None, input_dir = 'inputs', output_dir = 'results', denoise_strength = 0.5, outscale = 4, suffix = 'out', tile = 200, tile_pad = 10, pre_pad = 0, face_enhance = True, alpha_upsampler = 'realsrgan', out_ext = 'auto', fp32 = True, gpu_id = None, ): # determine models according to model names model_name = model_name.split('.')[0] if model_name == 'RealESRGAN_x4plus': # x4 RRDBNet model model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4) netscale = 4 file_url = ['https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth'] elif model_name == 'RealESRNet_x4plus': # x4 RRDBNet model model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4) netscale = 4 file_url = ['https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.1/RealESRNet_x4plus.pth'] elif model_name == 'RealESRGAN_x4plus_anime_6B': # x4 RRDBNet model with 6 blocks model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=6, num_grow_ch=32, scale=4) netscale = 4 file_url = ['https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/RealESRGAN_x4plus_anime_6B.pth'] elif model_name == 'RealESRGAN_x2plus': # x2 RRDBNet model model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=2) netscale = 2 file_url = ['https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.1/RealESRGAN_x2plus.pth'] elif model_name == 'realesr-animevideov3': # x4 VGG-style model (XS size) model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=16, upscale=4, act_type='prelu') netscale = 4 file_url = ['https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-animevideov3.pth'] elif model_name == 'realesr-general-x4v3': # x4 VGG-style model (S size) model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu') netscale = 4 file_url = [ 'https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-wdn-x4v3.pth', 'https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth' ] # determine model paths if model_path is None: model_path = os.path.join('weights', model_name + '.pth') if not os.path.isfile(model_path): ROOT_DIR = os.path.dirname(os.path.abspath(__file__)) for url in file_url: # model_path will be updated model_path = load_file_from_url( url=url, model_dir=os.path.join(ROOT_DIR, 'weights'), progress=True, file_name=None) # use dni to control the denoise strength dni_weight = None if model_name == 'realesr-general-x4v3' and denoise_strength != 1: wdn_model_path = model_path.replace('realesr-general-x4v3', 'realesr-general-wdn-x4v3') model_path = [model_path, wdn_model_path] dni_weight = [denoise_strength, 1 - denoise_strength] # restorer upsampler = RealESRGANer( scale=netscale, model_path=model_path, dni_weight=dni_weight, model=model, tile=tile, tile_pad=tile_pad, pre_pad=pre_pad, half=not fp32, gpu_id=gpu_id) if face_enhance: # Use GFPGAN for face enhancement from gfpgan import GFPGANer face_enhancer = GFPGANer( model_path='https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth', upscale=outscale, arch='clean', channel_multiplier=2, bg_upsampler=upsampler) os.makedirs(output_dir, exist_ok=True) if os.path.isfile(input_dir): paths = [input_dir] else: paths = sorted(glob.glob(os.path.join(input_dir, '*'))) Imgs = [] for idx, path in enumerate(paths): imgname, extension = os.path.splitext(os.path.basename(path)) print(f'Scaling x{outscale}:', path) img = cv2.imread(path, cv2.IMREAD_UNCHANGED) if len(img.shape) == 3 and img.shape[2] == 4: img_mode = 'RGBA' else: img_mode = None try: if face_enhance: _, _, output = face_enhancer.enhance(img, has_aligned=False, only_center_face=False, paste_back=True) else: output, _ = upsampler.enhance(img, outscale=outscale) except RuntimeError as error: print('Error', error) print('If you encounter CUDA or RAM out of memory, try to set --tile with a smaller number.') else: if out_ext == 'auto': extension = extension[1:] else: extension = out_ext if img_mode == 'RGBA': # RGBA images should be saved in png format extension = 'png' if suffix == '': save_path = os.path.join(output_dir, f'{imgname}.{extension}') else: save_path = os.path.join(output_dir, f'{imgname}_{suffix}.{extension}') cv2.imwrite(save_path, output) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) img = Image.fromarray(img) Imgs.append(img) return Imgs