import os from utils.util import check_path_is_img from utils.data_utils import Transforms from utils.augmentation import NumpyToTensor import random def add_numpy_unpaired_data(data, transforms, config, shuffle=False): A_paths = [] B_paths = [] if config['dataset']['unpaired_' + config['common']['phase'] + 'A_filelist'] != '': unpaired_data_file1 = open(config['dataset']['unpaired_' + config['common']['phase'] + 'A_filelist'], 'r') Lines = unpaired_data_file1.readlines() if shuffle: random.shuffle(Lines) for line in Lines: if not config['dataset']['use_absolute_datafile']: file = os.path.join(config['dataset']['dataroot'], line.strip()) else: file = line.strip() if os.path.exists(file): A_paths.append(file) unpaired_data_file1.close() unpaired_data_file2 = open(config['dataset']['unpaired_' + config['common']['phase'] + 'B_filelist'], 'r') Lines = unpaired_data_file2.readlines() if shuffle: random.shuffle(Lines) for line in Lines: if not config['dataset']['use_absolute_datafile']: file = os.path.join(config['dataset']['dataroot'], line.strip()) else: file = line.strip() if os.path.exists(file): B_paths.append(file) unpaired_data_file2.close() elif config['dataset']['unpaired_' + config['common']['phase'] + 'A_folder'] != '' and \ config['dataset']['unpaired_' + config['common']['phase'] + 'B_folder'] != '': dir_A = config['dataset']['unpaired_' + config['common']['phase'] + 'A_folder'] filenames = os.listdir(dir_A) if shuffle: random.shuffle(filenames) for filename in filenames: if not check_path_is_img(filename): continue A_path = os.path.join(dir_A, filename) if os.path.exists(A_path): A_paths.append(A_path) dir_B = config['dataset']['unpaired_' + config['common']['phase'] + 'B_folder'] filenames = os.listdir(dir_B) if shuffle: random.shuffle(filenames) for filename in filenames: if not check_path_is_img(filename): continue B_path = os.path.join(dir_B, filename) if os.path.exists(B_path): B_paths.append(B_path) else: dir_A = os.path.join(config['dataset']['dataroot'], config['common']['phase'] + 'numpyunpairedA') dir_B = os.path.join(config['dataset']['dataroot'], config['common']['phase'] + 'numpyunpairedB') if os.path.exists(dir_A) and os.path.exists(dir_B): filenames = os.listdir(dir_A) if shuffle: random.shuffle(filenames) for filename in filenames: if not check_path_is_img(filename): continue A_path = os.path.join(dir_A, filename) A_paths.append(A_path) filenames = os.listdir(dir_B) if shuffle: random.shuffle(filenames) for filename in filenames: if not check_path_is_img(filename): continue B_path = os.path.join(dir_B, filename) B_paths.append(B_path) btoA = config['dataset']['direction'] == 'BtoA' input_nc = config['model']['output_nc'] if btoA else config['model']['input_nc'] output_nc = config['model']['input_nc'] if btoA else config['model']['output_nc'] transform = Transforms(config, input_grayscale_flag=(input_nc == 1), output_grayscale_flag=(output_nc == 1)) transform.transform_list.append(NumpyToTensor()) transform = transform.compose_transforms() data['unpaired_A_path'] = A_paths data['unpaired_B_path'] = B_paths transforms['unpaired'] = transform def apply_numpy_unpaired_transforms(index, data, transforms, return_dict): if len(data['unpaired_A_path']) > 0 and len(data['unpaired_B_path']) > 0: index_B = random.randint(0, len(data['unpaired_B_path']) - 1) return_dict['unpaired_A'], return_dict['unpaired_B'] = transforms['unpaired'] \ (data['unpaired_A_path'][index], data['unpaired_B_path'][index_B]) return_dict['unpaired_A_path'] = data['unpaired_A_path'][index] return_dict['unpaired_B_path'] = data['unpaired_B_path'][index_B]