import os from utils.util import check_path_is_img from utils.data_utils import Transforms, check_create_shuffled_order, check_equal_length from utils.augmentation import NumpyToTensor def add_numpy_paired_data(data, transforms, config, paired_data_order): A_paths = [] B_paths = [] if config['dataset']['paired_' + config['common']['phase'] + '_filelist'] != '': paired_data_file = open(config['dataset']['paired_' + config['common']['phase'] + '_filelist'], 'r') Lines = paired_data_file.readlines() paired_data_order = check_create_shuffled_order(Lines, paired_data_order) check_equal_length(Lines, paired_data_order, data) for i in paired_data_order: line = Lines[i] if not config['dataset']['use_absolute_datafile']: file1 = os.path.join(config['dataset']['dataroot'], line.split(" ")[0]).strip() file2 = os.path.join(config['dataset']['dataroot'], line.split(" ")[1]).strip() else: file1 = line.split(" ")[0].strip() file2 = line.split(" ")[1].strip() if os.path.exists(file1) and os.path.exists(file2): A_paths.append(file1) B_paths.append(file2) paired_data_file.close() elif config['dataset']['paired_' + config['common']['phase'] + 'A_folder'] != '' and \ config['dataset']['paired_' + config['common']['phase'] + 'B_folder'] != '': dir_A = config['dataset']['paired_' + config['common']['phase'] + 'A_folder'] dir_B = config['dataset']['paired_' + config['common']['phase'] + 'B_folder'] filenames = os.listdir(dir_A) paired_data_order = check_create_shuffled_order(filenames, paired_data_order) check_equal_length(filenames, paired_data_order, data) for i in paired_data_order: filename = filenames[i] if not check_path_is_img(filename): continue A_path = os.path.join(dir_A, filename) B_path = os.path.join(dir_B, filename) if os.path.exists(A_path) and os.path.exists(B_path): A_paths.append(A_path) B_paths.append(B_path) else: dir_A = os.path.join(config['dataset']['dataroot'], config['common']['phase'] + 'numpypairedA') dir_B = os.path.join(config['dataset']['dataroot'], config['common']['phase'] + 'numpypairedB') if os.path.exists(dir_A) and os.path.exists(dir_B): filenames = os.listdir(dir_A) paired_data_order = check_create_shuffled_order(filenames, paired_data_order) check_equal_length(filenames, paired_data_order, data) for i in paired_data_order: filename = filenames[i] if not check_path_is_img(filename): continue A_path = os.path.join(dir_A, filename) B_path = os.path.join(dir_B, filename) if os.path.exists(A_path) and os.path.exists(B_path): A_paths.append(A_path) B_paths.append(B_path) btoA = config['dataset']['direction'] == 'BtoA' # get the number of channels of input image input_nc = config['model']['output_nc'] if btoA else config['model']['input_nc'] output_nc = config['model']['input_nc'] if btoA else config['model']['output_nc'] transform = Transforms(config, input_grayscale_flag=(input_nc == 1), output_grayscale_flag=(output_nc == 1)) transform.transform_list.append(NumpyToTensor()) transform = transform.compose_transforms() data['paired_A_path'] = A_paths data['paired_B_path'] = B_paths transforms['paired'] = transform return paired_data_order def apply_numpy_paired_transforms(index, data, transforms, return_dict): if len(data['paired_A_path']) > 0: return_dict['paired_A'], return_dict['paired_B'] = transforms['paired'] \ (data['paired_A_path'][index], data['paired_B_path'][index]) return_dict['paired_A_path'] = data['paired_A_path'][index] return_dict['paired_B_path'] = data['paired_B_path'][index]