import gradio as gr from transformers import pipeline def predict(image): model_id = "google/vit-base-patch16-224" classifier = pipeline("image-classification", model=model_id) predictions = classifier(image) # Sort predictions based on confidence and select the top one top_prediction = sorted(predictions, key=lambda x: x['score'], reverse=True)[0] # Prepare a mockup tweet text tweet_text = f"Predicted Label: {top_prediction['label']}, Confidence: {top_prediction['score']:.2f}" return tweet_text title = "Image Classifier to Tweet" description = "This demo recognizes and classifies images using the 'google/vit-base-patch16-224' model and generates a mock tweet with the top prediction." input_component = gr.Image(type="pil", label="Upload an image here") output_component = gr.Textbox(label="Mock Tweet") gr.Interface(fn=predict, inputs=input_component, outputs=output_component, title=title, description=description).launch()