import numpy as np import tensorflow as tf from datasets import load_dataset from huggingface_hub import create_repo, from_pretrained_keras, push_to_hub_keras from tensorflow import keras from tensorflow.keras import layers labeled_samples_repo_id = create_repo("actlearn_labeled_samples", exist_ok=True, repo_type="dataset").repo_id unlabled_samples_repo_id = create_repo("actlearn_unlabeled_samples", exist_ok=True, repo_type="dataset").repo_id to_label_samples_repo_id = create_repo("actlearn_to_label_samples", exist_ok=True, repo_type="dataset").repo_id test_dataset_repo_id = create_repo("actlearn_test_mnist", exist_ok=True, repo_type="dataset").repo_id model_repo_id = create_repo("actlearn_mnist_model", exist_ok=True).repo_id def to_numpy(examples): examples["pixel_values"] = [np.array(image.convert("1")) for image in examples["image"]] return examples def preprocess(): train_dataset = load_dataset(labeled_samples_repo_id)["train"] train_dataset = train_dataset.map(to_numpy, batched=True) test_dataset = load_dataset(test_dataset_repo_id)["test"] test_dataset = test_dataset.map(to_numpy, batched=True) x_train = train_dataset["pixel_values"] y_train = train_dataset["label"] x_test = test_dataset["pixel_values"] y_test = test_dataset["label"] x_train = np.expand_dims(x_train, -1) x_test = np.expand_dims(x_test, -1) num_classes = 10 y_train = keras.utils.to_categorical(y_train, num_classes) y_test = keras.utils.to_categorical(y_test, num_classes) return x_train, y_train, x_test, y_test def train(): input_shape = (28, 28, 1) x_train, y_train, x_test, y_test = preprocess() num_classes = 10 model = keras.Sequential( [ keras.Input(shape=input_shape), layers.Conv2D(32, kernel_size=(3, 3), activation="relu"), layers.MaxPooling2D(pool_size=(2, 2)), layers.Conv2D(64, kernel_size=(3, 3), activation="relu"), layers.MaxPooling2D(pool_size=(2, 2)), layers.Flatten(), layers.Dropout(0.5), layers.Dense(num_classes, activation="softmax"), ] ) model.compile(loss="categorical_crossentropy", optimizer="adam", metrics=["accuracy"]) model.fit(x_train, y_train, batch_size=128, epochs=4, validation_split=0.1) score = model.evaluate(x_test, y_test, verbose=0) print("Test loss:", score[0]) print("Test accuracy:", score[1]) push_to_hub_keras(model, model_repo_id) def find_samples_to_label(): loaded_model = from_pretrained_keras(model_repo_id) loaded_model.compile(loss="categorical_crossentropy", optimizer="adam", metrics=["accuracy"]) unlabeled_data = load_dataset(unlabled_samples_repo_id)["train"] processed_data = unlabeled_data.map(to_numpy, batched=True) processed_data = processed_data["pixel_values"] processed_data = tf.expand_dims(processed_data, -1) # Get all predictions # And then get the 5 samples with the lowest prediction score preds = loaded_model.predict(processed_data) top_pred_confs = 1 - np.max(preds, axis=1) idx_to_label = np.argpartition(top_pred_confs, -5)[-5:] # Upload samples to the dataset to label to_label_data = unlabeled_data.select(idx_to_label) to_label_data.push_to_hub(to_label_samples_repo_id) # Remove from the pool of samples unlabeled_data = unlabeled_data.select((i for i in range(len(unlabeled_data)) if i not in set(idx_to_label))) unlabeled_data.push_to_hub(unlabled_samples_repo_id) def main(): train() find_samples_to_label() if __name__ == "__main__": main()