import os import json from torch.utils.data import Dataset from torchvision.datasets.utils import download_url from PIL import Image from data.utils import pre_caption class coco_karpathy_train(Dataset): def __init__(self, transform, image_root, ann_root, max_words=30, prompt=''): ''' image_root (string): Root directory of images (e.g. coco/images/) ann_root (string): directory to store the annotation file ''' url = 'https://storage.googleapis.com/sfr-vision-language-research/datasets/coco_karpathy_train.json' filename = 'coco_karpathy_train.json' download_url(url,ann_root) self.annotation = json.load(open(os.path.join(ann_root,filename),'r')) self.transform = transform self.image_root = image_root self.max_words = max_words self.prompt = prompt self.img_ids = {} n = 0 for ann in self.annotation: img_id = ann['image_id'] if img_id not in self.img_ids.keys(): self.img_ids[img_id] = n n += 1 def __len__(self): return len(self.annotation) def __getitem__(self, index): ann = self.annotation[index] image_path = os.path.join(self.image_root,ann['image']) image = Image.open(image_path).convert('RGB') image = self.transform(image) caption = self.prompt+pre_caption(ann['caption'], self.max_words) return image, caption, self.img_ids[ann['image_id']] class coco_karpathy_caption_eval(Dataset): def __init__(self, transform, image_root, ann_root, split): ''' image_root (string): Root directory of images (e.g. coco/images/) ann_root (string): directory to store the annotation file split (string): val or test ''' urls = {'val':'https://storage.googleapis.com/sfr-vision-language-research/datasets/coco_karpathy_val.json', 'test':'https://storage.googleapis.com/sfr-vision-language-research/datasets/coco_karpathy_test.json'} filenames = {'val':'coco_karpathy_val.json','test':'coco_karpathy_test.json'} download_url(urls[split],ann_root) self.annotation = json.load(open(os.path.join(ann_root,filenames[split]),'r')) self.transform = transform self.image_root = image_root def __len__(self): return len(self.annotation) def __getitem__(self, index): ann = self.annotation[index] image_path = os.path.join(self.image_root,ann['image']) image = Image.open(image_path).convert('RGB') image = self.transform(image) img_id = ann['image'].split('/')[-1].strip('.jpg').split('_')[-1] return image, int(img_id) class coco_karpathy_retrieval_eval(Dataset): def __init__(self, transform, image_root, ann_root, split, max_words=30): ''' image_root (string): Root directory of images (e.g. coco/images/) ann_root (string): directory to store the annotation file split (string): val or test ''' urls = {'val':'https://storage.googleapis.com/sfr-vision-language-research/datasets/coco_karpathy_val.json', 'test':'https://storage.googleapis.com/sfr-vision-language-research/datasets/coco_karpathy_test.json'} filenames = {'val':'coco_karpathy_val.json','test':'coco_karpathy_test.json'} download_url(urls[split],ann_root) self.annotation = json.load(open(os.path.join(ann_root,filenames[split]),'r')) self.transform = transform self.image_root = image_root self.text = [] self.image = [] self.txt2img = {} self.img2txt = {} txt_id = 0 for img_id, ann in enumerate(self.annotation): self.image.append(ann['image']) self.img2txt[img_id] = [] for i, caption in enumerate(ann['caption']): self.text.append(pre_caption(caption,max_words)) self.img2txt[img_id].append(txt_id) self.txt2img[txt_id] = img_id txt_id += 1 def __len__(self): return len(self.annotation) def __getitem__(self, index): image_path = os.path.join(self.image_root, self.annotation[index]['image']) image = Image.open(image_path).convert('RGB') image = self.transform(image) return image, index