import gradio as gr title = "XLM-RoBERTa" description = "Gradio Demo for XLM-RoBERTa. To use it, simply add your text, or click one of the examples to load them. Read more at the links below." article = "

Unsupervised Cross-lingual Representation Learning at Scale

" examples = [ ["Hello I'm a model.","xlm-roberta-base"] ] io1 = gr.Interface.load("huggingface/xlm-roberta-base") io2 = gr.Interface.load("huggingface/xlm-roberta-large") def inference(inputtext, model): if model == "xlm-roberta-base": outlabel = io1(inputtext) else: outlabel = io2(inputtext) return outlabel gr.Interface( inference, [gr.inputs.Textbox(label="Context",lines=10),gr.inputs.Dropdown(choices=["xlm-roberta-base","xlm-roberta-large"], type="value", default="xlm-roberta-base", label="model")], [gr.outputs.Textbox(label="Output")], examples=examples, article=article, title=title, description=description).launch(enable_queue=True, cache_examples=True)