import streamlit as st import pandas as pd import joblib import sklearn import transformers st.header('FTDS Model Deployment') st.write(""" Created by FTDS Curriculum Team Use the sidebar to select input features. """) @st.cache def fetch_data(): df = pd.read_csv('https://raw.githubusercontent.com/ardhiraka/PFDS_sources/master/campus.csv') return df df = fetch_data() st.write(df) st.sidebar.header('User Input Features') def user_input(): gender = st.sidebar.selectbox('Gender', df['gender'].unique()) ssc = st.sidebar.number_input('Secondary School Points', value=67.00) hsc = st.sidebar.number_input('High School Points', 0.0, value=91.0) hsc_s = st.sidebar.selectbox('High School Spec', df['hsc_s'].unique()) degree_p = st.sidebar.number_input('Degree Points', 0.0, value=58.0) degree_t = st.sidebar.selectbox('Degree Spec', df['degree_t'].unique()) workex = st.sidebar.selectbox('Work Experience?', df['workex'].unique()) etest_p = st.sidebar.number_input('Etest Points', 0.0, value=78.00) spec = st.sidebar.selectbox('Specialization', df['specialisation'].unique()) mba_p = st.sidebar.number_input('MBA Points', 0.0, value=54.55) data = { 'gender': gender, 'ssc_p': ssc, 'hsc_p': hsc, 'hsc_s': hsc_s, 'degree_p': degree_p, 'degree_t': degree_t, 'workex': workex, 'etest_p': etest_p, 'specialisation':spec, 'mba_p': mba_p } features = pd.DataFrame(data, index=[0]) return features input = user_input() st.subheader('User Input') st.write(input) load_model = joblib.load("my_model.pkl") prediction = load_model.predict(input) if prediction == 1: prediction = 'Placed' else: prediction = 'Not Placed' st.write('Based on user input, the placement model predicted: ') st.write(prediction)