import subprocess import sys print("Reinstalling mmcv") subprocess.check_call([sys.executable, "-m", "pip", "uninstall", "-y", "mmcv-full==1.3.17"]) subprocess.check_call([sys.executable, "-m", "pip", "install", "mmcv-full==1.3.17", "-f", "https://download.openmmlab.com/mmcv/dist/cpu/torch1.10.0/index.html"]) print("mmcv install complete") ## Only works if we reinstall mmcv here. from gradio.outputs import Label from icevision.all import * from icevision.models.checkpoint import * import PIL import gradio as gr import os # Load model checkpoint_path = "models/model_checkpoint.pth" checkpoint_and_model = model_from_checkpoint(checkpoint_path) model = checkpoint_and_model["model"] model_type = checkpoint_and_model["model_type"] class_map = checkpoint_and_model["class_map"] # Transforms img_size = checkpoint_and_model["img_size"] valid_tfms = tfms.A.Adapter([*tfms.A.resize_and_pad(img_size), tfms.A.Normalize()]) for root, dirs, files in os.walk(r"sample_images/"): for filename in files: print(filename) examples = ["sample_images/" + file for file in files] article = "
" enable_queue = True # Populate examples in Gradio interface example_images = [["sample_images/" + file] for file in files] # Columns: Input Image | Label | Box | Detection Threshold examples = [ [example_images[0], False, True, 0.5], [example_images[1], True, True, 0.5], [example_images[2], False, True, 0.7], [example_images[3], True, True, 0.7], [example_images[4], False, True, 0.5], [example_images[5], False, True, 0.5], [example_images[6], False, True, 0.5], [example_images[7], False, True, 0.5], ] def show_preds(input_image, display_label, display_bbox, detection_threshold): if detection_threshold == 0: detection_threshold = 0.5 img = PIL.Image.fromarray(input_image, "RGB") pred_dict = model_type.end2end_detect( img, valid_tfms, model, class_map=class_map, detection_threshold=detection_threshold, display_label=display_label, display_bbox=display_bbox, return_img=True, font_size=16, label_color="#FF59D6", ) return pred_dict["img"], len(pred_dict["detection"]["bboxes"]) # display_chkbox = gr.inputs.CheckboxGroup(["Label", "BBox"], label="Display", default=True) display_chkbox_label = gr.inputs.Checkbox(label="Label", default=False) display_chkbox_box = gr.inputs.Checkbox(label="Box", default=True) detection_threshold_slider = gr.inputs.Slider( minimum=0, maximum=1, step=0.1, default=0.5, label="Detection Threshold" ) outputs = [ gr.outputs.Image(type="pil", label="RetinaNet Inference"), gr.outputs.Textbox(type='number', label='Microalgae Count') ] # Option 1: Get an image from local drive gr_interface = gr.Interface( fn=show_preds, inputs=[ "image", display_chkbox_label, display_chkbox_box, detection_threshold_slider, ], outputs=outputs, title="Microalgae Detector with RetinaNet", description="This RetinaNet model counts microalgaes on a given image. Upload an image or click an example image below to use.", article=article, examples=examples, ) # # Option 2: Grab an image from a webcam # gr_interface = gr.Interface(fn=show_preds, inputs=["webcam", display_chkbox_label, display_chkbox_box, detection_threshold_slider], outputs=outputs, title='IceApp - COCO', live=False) # # Option 3: Continuous image stream from the webcam # gr_interface = gr.Interface(fn=show_preds, inputs=["webcam", display_chkbox_label, display_chkbox_box, detection_threshold_slider], outputs=outputs, title='IceApp - COCO', live=True) gr_interface.launch(inline=False, share=True, debug=True)