import os import json import torch import torch.nn as nn import torch.nn.functional as F from dataclasses import dataclass from .gemma import KVCache from .paligemma import PaliGemma, PaliGemmaConfig from typing import Optional from utils import * from pathlib import Path from safetensors import safe_open def convert_weights_dict(original_weights): converted_weights = {} converted_weights['custom_text_proj.lora_A.weight'] = original_weights['base_model.model.custom_text_proj.lora_A.weight'] converted_weights['custom_text_proj.lora_B.weight'] = original_weights['base_model.model.custom_text_proj.lora_B.weight'] for i in range(18): converted_weights[f'model.language_model.model.layers.{i}.mlp.down_proj.lora_A.weight'] = original_weights[f'base_model.model.model.language_model.model.layers.{i}.mlp.down_proj.lora_A.weight'] converted_weights[f'model.language_model.model.layers.{i}.mlp.down_proj.lora_B.weight'] = original_weights[f'base_model.model.model.language_model.model.layers.{i}.mlp.down_proj.lora_B.weight'] converted_weights[f'model.language_model.model.layers.{i}.mlp.gate_proj.lora_A.weight'] = original_weights[f'base_model.model.model.language_model.model.layers.{i}.mlp.gate_proj.lora_A.weight'] converted_weights[f'model.language_model.model.layers.{i}.mlp.gate_proj.lora_B.weight'] = original_weights[f'base_model.model.model.language_model.model.layers.{i}.mlp.gate_proj.lora_B.weight'] converted_weights[f'model.language_model.model.layers.{i}.mlp.up_proj.lora_A.weight'] = original_weights[f'base_model.model.model.language_model.model.layers.{i}.mlp.up_proj.lora_A.weight'] converted_weights[f'model.language_model.model.layers.{i}.mlp.up_proj.lora_B.weight'] = original_weights[f'base_model.model.model.language_model.model.layers.{i}.mlp.up_proj.lora_B.weight'] converted_weights[f'model.language_model.model.layers.{i}.self_attn.q_proj.lora_A.weight'] = original_weights[f'base_model.model.model.language_model.model.layers.{i}.self_attn.q_proj.lora_A.weight'] converted_weights[f'model.language_model.model.layers.{i}.self_attn.q_proj.lora_B.weight'] = original_weights[f'base_model.model.model.language_model.model.layers.{i}.self_attn.q_proj.lora_B.weight'] converted_weights[f'model.language_model.model.layers.{i}.self_attn.k_proj.lora_A.weight'] = original_weights[f'base_model.model.model.language_model.model.layers.{i}.self_attn.k_proj.lora_A.weight'] converted_weights[f'model.language_model.model.layers.{i}.self_attn.k_proj.lora_B.weight'] = original_weights[f'base_model.model.model.language_model.model.layers.{i}.self_attn.k_proj.lora_B.weight'] converted_weights[f'model.language_model.model.layers.{i}.self_attn.v_proj.lora_A.weight'] = original_weights[f'base_model.model.model.language_model.model.layers.{i}.self_attn.v_proj.lora_A.weight'] converted_weights[f'model.language_model.model.layers.{i}.self_attn.v_proj.lora_B.weight'] = original_weights[f'base_model.model.model.language_model.model.layers.{i}.self_attn.v_proj.lora_B.weight'] converted_weights[f'model.language_model.model.layers.{i}.self_attn.o_proj.lora_A.weight'] = original_weights[f'base_model.model.model.language_model.model.layers.{i}.self_attn.o_proj.lora_A.weight'] converted_weights[f'model.language_model.model.layers.{i}.self_attn.o_proj.lora_B.weight'] = original_weights[f'base_model.model.model.language_model.model.layers.{i}.self_attn.o_proj.lora_B.weight'] return converted_weights class ColPali(nn.Module): def __init__(self, cfg: PaliGemmaConfig): super().__init__() self.model = PaliGemma(cfg=cfg) self.dim = 128 self.custom_text_proj = nn.Linear(self.model.cfg.text_config.hidden_size, self.dim, bias=False) @staticmethod def from_pretrained(model_dir, torch_dtype: torch.dtype = torch.float32): torch.set_default_dtype(torch_dtype) with open(os.path.join(model_dir, 'config.json'), "r") as f: model_config = json.loads(f.read()) config = PaliGemmaConfig.from_dict(model_config) safetensor_files = Path(model_dir).glob("*.safetensors") weights = {} for file in safetensor_files: with safe_open(file, framework='pt', device="cpu") as f: for key in f.keys(): weights[key] = f.get_tensor(key) model = ColPali(config) model.load_state_dict(weights, strict=False) model.tie_weights() return model def load_lora(self, model_dir): weights = {} with safe_open(os.path.join(model_dir, "adapter_model.safetensors"), framework="pt", device="cpu") as f: for key in f.keys(): weights[key] = f.get_tensor(key) converted_weights = convert_weights_dict(weights) self.load_state_dict(converted_weights, strict=False) def tie_weights(self): self.model.language_model.tie_weights() def forward(self, *args, **kwargs) -> torch.Tensor: outputs = self.model(*args, **kwargs) last_hidden_states = outputs[0] proj = self.custom_text_proj(last_hidden_states) # L2 normalization proj = proj / proj.norm(dim=-1, keepdim=True) # (batch_size, sequence_length, dim) proj = proj * kwargs['attention_mask'].unsqueeze(-1) # (batch_size, sequence_length, dim) return proj