import torch import spaces import gradio as gr from diffusers import ModularPipelineBlocks from diffusers.utils import export_to_video from diffusers.modular_pipelines import WanModularPipeline class MatrixGameWanModularPipeline(WanModularPipeline): """ A ModularPipeline for MatrixGameWan. This is an experimental feature and is likely to change in the future. """ @property def default_sample_height(self): return 44 @property def default_sample_width(self): return 80 blocks = ModularPipelineBlocks.from_pretrained("diffusers/matrix-game-2-modular", trust_remote_code=True) image_to_action_block = ModularPipelineBlocks.from_pretrained("dn6/matrix-game-image-to-action", trust_remote_code=True) blocks.sub_blocks.insert("image_to_action", image_to_action_block, 0) pipe = MatrixGameWanModularPipeline(blocks, "diffusers/matrix-game-2-modular") pipe.load_components(trust_remote_code=True, device_map="cuda", torch_dtype={"default": torch.bfloat16, "vae": torch.float32}) @spaces.GPU(duration=120) def predict(image, prompt): output = pipe(image=image, prompt=prompt, num_frames=81) return export_to_video(output.values['videos'][0], "output.mp4") examples = [] css = """ #col-container { margin: 0 auto; max-width: 1024px; } #logo-title { text-align: center; } #logo-title img { width: 400px; } #edit_text{margin-top: -62px !important} """ with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.Markdown( "Image to Video [Modular Diffusers](https://huggingface.co/docs/diffusers/v0.35.1/en/modular_diffusers/overview) " "Pipeline that uses Qwen 2.5 VL 72B Instruct and [Matrix Game 2.0](https://huggingface.co/Skywork/Matrix-Game-2.0) " "to allow you to move through images. Works best for scenes with static elements" ) with gr.Row(): with gr.Column(): image = gr.Image(label="Input Image", show_label=False, type="pil", interactive=True) with gr.Column(): result = gr.Video(label="Result") with gr.Row(): prompt = gr.Text( label="Prompt", show_label=False, placeholder="describe how you would like to move in the image", container=False, ) with gr.Row(): run_button = gr.Button("Run!", variant="primary") gr.on( triggers=[run_button.click], fn=predict, inputs=[image, prompt], outputs=[result], ) if __name__ == "__main__": demo.launch()