from streamlit_simulation.utils.env import use_dummy from transformer_model.scripts.config_transformer import FORECAST_HORIZON from transformer_model.scripts.utils.informer_dataset_class import \ InformerDataset from transformer_model.scripts.utils.load_final_model import \ load_real_transformer_model try: from streamlit_simulation.utils.dummy import (DummyDataset, DummyTransformerModel) except ImportError: DummyTransformerModel = None DummyDataset = None def load_final_transformer_model(): if use_dummy(): if DummyTransformerModel is None: raise ImportError("DummyTransformerModel not available") return DummyTransformerModel(), "cpu" else: return load_real_transformer_model() def load_model_and_dataset(): model, device = load_final_transformer_model() if use_dummy(): if DummyDataset is None: raise ImportError("DummyDataset not available") dataset = DummyDataset(length=200) else: train_dataset = InformerDataset( data_split="train", random_seed=13, forecast_horizon=FORECAST_HORIZON ) test_dataset = InformerDataset( data_split="test", random_seed=13, forecast_horizon=FORECAST_HORIZON ) test_dataset.scaler = train_dataset.scaler dataset = test_dataset return model, dataset, device