Dacho688 commited on
Commit
e89ef0e
1 Parent(s): 49099ea

App Updates

Browse files

- improve base prompt
- include an example

__pycache__/streaming.cpython-312.pyc ADDED
Binary file (3.43 kB). View file
 
__pycache__/test_streaming.cpython-312.pyc ADDED
Binary file (3.43 kB). View file
 
__pycache__/test_streaming.cpython-39.pyc ADDED
Binary file (2.1 kB). View file
 
app.py CHANGED
@@ -16,7 +16,7 @@ llm_engine = HfEngine("meta-llama/Meta-Llama-3.1-70B-Instruct")
16
  agent = ReactCodeAgent(
17
  tools=[],
18
  llm_engine=llm_engine,
19
- additional_authorized_imports=["numpy", "pandas", "matplotlib", "seaborn","scipy"],
20
  max_iterations=10,
21
  )
22
 
@@ -24,13 +24,19 @@ base_prompt = """You are an expert full stack data analyst.
24
  You are given a data file and the data structure below.
25
  The data file is passed to you as the variable data_file, it is a pandas dataframe, you can use it directly.
26
  DO NOT try to load data_file, it is already a dataframe pre-loaded in your python interpreter!
27
- When plotting using matplotlib/seaborn save the figures to the (already existing) folder'./figures/': take care to clear each figure with plt.clf() before doing another plot.
28
- When filtering pandas dataframe use the iloc.
29
- When importing packages use this format: from package import module
30
- For example: from matplotlib import pyplot as plt
31
- Not: import matplotlib.pyplot as plt
32
 
33
- Use the data file to answer the question or solve a problem given below.
 
 
 
 
 
 
 
 
34
 
35
  Structure of the data:
36
  {structure_notes}
@@ -39,7 +45,7 @@ Question/Problem:
39
  """
40
 
41
  example_notes="""This data is about the Titanic wreck in 1912.
42
- The target figure is the survival of passengers, notes by 'Survived'
43
  pclass: A proxy for socio-economic status (SES)
44
  1st = Upper
45
  2nd = Middle
@@ -51,7 +57,9 @@ Spouse = husband, wife (mistresses and fiancés were ignored)
51
  parch: The dataset defines family relations in this way...
52
  Parent = mother, father
53
  Child = daughter, son, stepdaughter, stepson
54
- Some children travelled only with a nanny, therefore parch=0 for them."""
 
 
55
 
56
  def get_images_in_directory(directory):
57
  image_extensions = {'.png', '.jpg', '.jpeg', '.gif', '.bmp', '.tiff'}
@@ -106,13 +114,22 @@ with gr.Blocks(
106
  secondary_hue=gr.themes.colors.yellow,
107
  )
108
  ) as demo:
109
- gr.Markdown("""# Llama-3.1 Data analyst 📊🤔
110
-
111
- Drop a `.csv` file below and ask a question about your data.
112
- **Llama-3.1-70B will analyze and answer.**""")
113
- file_input = gr.File(label="Your file to analyze")
 
 
 
 
 
 
 
 
 
114
  text_input = gr.Textbox(
115
- label="Ask a question about your data?"
116
  )
117
  submit = gr.Button("Run", variant="primary")
118
  chatbot = gr.Chatbot(
@@ -123,11 +140,12 @@ Drop a `.csv` file below and ask a question about your data.
123
  "https://em-content.zobj.net/source/twitter/53/robot-face_1f916.png",
124
  ),
125
  )
126
- # gr.Examples(
127
- # examples=[["./example/titanic.csv", example_notes]],
128
- # inputs=[file_input, text_input],
129
- # cache_examples=False
130
- # )
 
131
 
132
  submit.click(interact_with_agent, [file_input, text_input], [chatbot])
133
 
 
16
  agent = ReactCodeAgent(
17
  tools=[],
18
  llm_engine=llm_engine,
19
+ additional_authorized_imports=["numpy", "pandas", "matplotlib", "seaborn","scipy","sklearn"],
20
  max_iterations=10,
21
  )
22
 
 
24
  You are given a data file and the data structure below.
25
  The data file is passed to you as the variable data_file, it is a pandas dataframe, you can use it directly.
26
  DO NOT try to load data_file, it is already a dataframe pre-loaded in your python interpreter!
27
+ When plotting using matplotlib/seaborn save the figures to the (already existing) folder'./figures/': take care to clear
28
+ each figure with plt.clf() before doing another plot.
29
+ When plotting make the plots as pretty as possible given your tools. Same with tables, charts, or anything else.
 
 
30
 
31
+ In your final answer: summarize your findings and steps taken.
32
+ After each number derive real worlds insights, for instance: "Correlation between is_december and boredness is 1.3453, which suggest people are more bored in winter".
33
+ Your final answer should be a long string with at least 4 numbered and detailed parts:
34
+ 1. Summary of Question/Problem
35
+ 2. Summary of Actions
36
+ 3. Summary of Findings
37
+ 3. Potential Next Steps
38
+
39
+ Use the data file to answer the question or perform a task below.
40
 
41
  Structure of the data:
42
  {structure_notes}
 
45
  """
46
 
47
  example_notes="""This data is about the Titanic wreck in 1912.
48
+ The target variable is the survival of passengers, noted by 'Survived'
49
  pclass: A proxy for socio-economic status (SES)
50
  1st = Upper
51
  2nd = Middle
 
57
  parch: The dataset defines family relations in this way...
58
  Parent = mother, father
59
  Child = daughter, son, stepdaughter, stepson
60
+ Some children travelled only with a nanny, therefore parch=0 for them.
61
+
62
+ Run a logistic regression."""
63
 
64
  def get_images_in_directory(directory):
65
  image_extensions = {'.png', '.jpg', '.jpeg', '.gif', '.bmp', '.tiff'}
 
114
  secondary_hue=gr.themes.colors.yellow,
115
  )
116
  ) as demo:
117
+ gr.Markdown("""# Data Analyst (ReAct Code Agent) 📊🤔
118
+
119
+ **Who am I?**
120
+ I'm your personal Data Analyst built on top of Llama-3.1-70B and the ReAct agent framework.
121
+ I break down your task step-by-step until I reach an answer/solution.
122
+ Along the way I share my thoughts, actions (Python code blobs), and observations.
123
+ I come packed with pandas, numpy, sklearn, matplotlib, seaborn, and more!
124
+
125
+ **Instructions**
126
+ 1. Drop or upload a `.csv` file below.
127
+ 2. Ask a question or give it a task.
128
+ 3. **Watch Llama-3.1-70B think, act, and observe until final answer.
129
+ \n**For an example, click on the example at the bottom of page to auto populate.**""")
130
+ file_input = gr.File(label="Drop/upload a .csv file to analyze")
131
  text_input = gr.Textbox(
132
+ label="Ask a question or give it a task."
133
  )
134
  submit = gr.Button("Run", variant="primary")
135
  chatbot = gr.Chatbot(
 
140
  "https://em-content.zobj.net/source/twitter/53/robot-face_1f916.png",
141
  ),
142
  )
143
+ gr.Examples(
144
+ examples=[["./example/titanic.csv", example_notes]],
145
+ inputs=[file_input, text_input],
146
+ cache_examples=False,
147
+ label='Click anywhere below to try this example.'
148
+ )
149
 
150
  submit.click(interact_with_agent, [file_input, text_input], [chatbot])
151
 
figures/classification_report.png ADDED
figures/confusion_matrix.png ADDED
figures/fare_sex_boxplot.png DELETED
Binary file (9.84 kB)
 
requirements.txt CHANGED
@@ -1,5 +1,5 @@
1
  git+https://github.com/huggingface/transformers.git#egg=transformers[agents]
2
  matplotlib
3
  seaborn
4
- scikit-learn
5
  scipy
 
1
  git+https://github.com/huggingface/transformers.git#egg=transformers[agents]
2
  matplotlib
3
  seaborn
4
+ sklearn
5
  scipy
test_app.py DELETED
@@ -1,134 +0,0 @@
1
- import os
2
- import shutil
3
- import gradio as gr
4
- from transformers import ReactCodeAgent, HfEngine, Tool
5
- import pandas as pd
6
-
7
- from gradio import Chatbot
8
- from test_streaming import stream_to_gradio
9
- from huggingface_hub import login
10
- from gradio.data_classes import FileData
11
-
12
- #login(os.getenv("HUGGINGFACEHUB_API_TOKEN"))
13
-
14
- llm_engine = HfEngine("meta-llama/Meta-Llama-3.1-70B-Instruct")
15
-
16
- agent = ReactCodeAgent(
17
- tools=[],
18
- llm_engine=llm_engine,
19
- additional_authorized_imports=["numpy", "pandas", "matplotlib", "seaborn","scipy"],
20
- max_iterations=10,
21
- )
22
- base_prompt = """You are an expert full stack data analyst.
23
- You are given a data file and the data structure below.
24
- The data file is passed to you as the variable data_file, it is a pandas dataframe, you can use it directly.
25
- DO NOT try to load data_file, it is already a dataframe pre-loaded in your python interpreter!
26
- When plotting using matplotlib/seaborn save the figures to the (already existing) folder'./figures/': take care to clear each figure with plt.clf() before doing another plot.
27
- When filtering pandas dataframe use the iloc.
28
- When importing packages use this format: from package import module
29
- For example: from matplotlib import pyplot as plt
30
- Not: import matplotlib.pyplot as plt
31
-
32
- Use the data file to answer the question or solve a problem given below.
33
-
34
- Structure of the data:
35
- {structure_notes}
36
-
37
- Question/Problem:
38
- """
39
-
40
- example_notes="""This data is about the Titanic wreck in 1912.
41
- The target figure is the survival of passengers, notes by 'Survived'
42
- pclass: A proxy for socio-economic status (SES)
43
- 1st = Upper
44
- 2nd = Middle
45
- 3rd = Lower
46
- age: Age is fractional if less than 1. If the age is estimated, is it in the form of xx.5
47
- sibsp: The dataset defines family relations in this way...
48
- Sibling = brother, sister, stepbrother, stepsister
49
- Spouse = husband, wife (mistresses and fiancés were ignored)
50
- parch: The dataset defines family relations in this way...
51
- Parent = mother, father
52
- Child = daughter, son, stepdaughter, stepson
53
- Some children travelled only with a nanny, therefore parch=0 for them."""
54
-
55
- def get_images_in_directory(directory):
56
- image_extensions = {'.png', '.jpg', '.jpeg', '.gif', '.bmp', '.tiff'}
57
-
58
- image_files = []
59
- for root, dirs, files in os.walk(directory):
60
- for file in files:
61
- if os.path.splitext(file)[1].lower() in image_extensions:
62
- image_files.append(os.path.join(root, file))
63
- return image_files
64
-
65
- def interact_with_agent(file_input, additional_notes):
66
- shutil.rmtree("./figures")
67
- os.makedirs("./figures")
68
-
69
- data_file = pd.read_csv(file_input)
70
- data_structure_notes = f"""- Description (output of .describe()):
71
- {data_file.describe()}
72
- - Columns with dtypes:
73
- {data_file.dtypes}"""
74
-
75
- prompt = base_prompt.format(structure_notes=data_structure_notes)
76
-
77
- if additional_notes and len(additional_notes) > 0:
78
- prompt += additional_notes
79
-
80
- messages = [gr.ChatMessage(role="user", content=additional_notes)]
81
- yield messages + [
82
- gr.ChatMessage(role="assistant", content="⏳ _Starting task..._")
83
- ]
84
-
85
- plot_image_paths = {}
86
- for msg in stream_to_gradio(agent, prompt, data_file=data_file):
87
- messages.append(msg)
88
- for image_path in get_images_in_directory("./figures"):
89
- if image_path not in plot_image_paths:
90
- image_message = gr.ChatMessage(
91
- role="assistant",
92
- content=FileData(path=image_path, mime_type="image/png"),
93
- )
94
- plot_image_paths[image_path] = True
95
- messages.append(image_message)
96
- yield messages + [
97
- gr.ChatMessage(role="assistant", content="⏳ _Still processing..._")
98
- ]
99
- yield messages
100
-
101
-
102
- with gr.Blocks(
103
- theme=gr.themes.Soft(
104
- primary_hue=gr.themes.colors.blue,
105
- secondary_hue=gr.themes.colors.yellow,
106
- )
107
- ) as demo:
108
- gr.Markdown("""# Llama-3.1 Data analyst 📊🤔
109
-
110
- Drop a `.csv` file below and ask a question about your data.
111
- **Llama-3.1-70B will analyze and answer.**""")
112
- file_input = gr.File(label="Your file to analyze")
113
- text_input = gr.Textbox(
114
- label="Ask a question about your data?"
115
- )
116
- submit = gr.Button("Run", variant="primary")
117
- chatbot = gr.Chatbot(
118
- label="Data Analyst Agent",
119
- type="messages",
120
- avatar_images=(
121
- None,
122
- "https://em-content.zobj.net/source/twitter/53/robot-face_1f916.png",
123
- ),
124
- )
125
- # gr.Examples(
126
- # examples=[["./example/titanic.csv", example_notes]],
127
- # inputs=[file_input, text_input],
128
- # cache_examples=False
129
- # )
130
-
131
- submit.click(interact_with_agent, [file_input, text_input], [chatbot])
132
-
133
- if __name__ == "__main__":
134
- demo.launch(server_port=7860)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
test_streaming.py DELETED
@@ -1,64 +0,0 @@
1
- from transformers.agents.agent_types import AgentAudio, AgentImage, AgentText, AgentType
2
- from transformers.agents import ReactAgent
3
-
4
-
5
- def pull_message(step_log: dict):
6
- try:
7
- from gradio import ChatMessage
8
- except ImportError:
9
- raise ImportError("Gradio should be installed in order to launch a gradio demo.")
10
-
11
- if step_log.get("rationale"):
12
- yield ChatMessage(role="assistant", content=step_log["rationale"])
13
- if step_log.get("tool_call"):
14
- used_code = step_log["tool_call"]["tool_name"] == "code interpreter"
15
- content = step_log["tool_call"]["tool_arguments"]
16
- if used_code:
17
- content = f"```py\n{content}\n```"
18
- yield ChatMessage(
19
- role="assistant",
20
- metadata={"title": f"🛠️ Used tool {step_log['tool_call']['tool_name']}"},
21
- content=content,
22
- )
23
- if step_log.get("observation"):
24
- yield ChatMessage(role="assistant", content=f"```\n{step_log['observation']}\n```")
25
- if step_log.get("error"):
26
- yield ChatMessage(
27
- role="assistant",
28
- content=str(step_log["error"]),
29
- metadata={"title": "💥 Error"},
30
- )
31
-
32
-
33
- def stream_to_gradio(agent: ReactAgent, task: str, **kwargs):
34
- """Runs an agent with the given task and streams the messages from the agent as gradio ChatMessages."""
35
-
36
- try:
37
- from gradio import ChatMessage
38
- except ImportError:
39
- raise ImportError("Gradio should be installed in order to launch a gradio demo.")
40
-
41
- class Output:
42
- output: AgentType | str = None
43
-
44
- for step_log in agent.run(task, stream=True, **kwargs):
45
- if isinstance(step_log, dict):
46
- for message in pull_message(step_log):
47
- print("message", message)
48
- yield message
49
-
50
- Output.output = step_log
51
- if isinstance(Output.output, AgentText):
52
- yield ChatMessage(role="assistant", content=f"**Final answer:**\n```\n{Output.output.to_string()}\n```")
53
- elif isinstance(Output.output, AgentImage):
54
- yield ChatMessage(
55
- role="assistant",
56
- content={"path": Output.output.to_string(), "mime_type": "image/png"},
57
- )
58
- elif isinstance(Output.output, AgentAudio):
59
- yield ChatMessage(
60
- role="assistant",
61
- content={"path": Output.output.to_string(), "mime_type": "audio/wav"},
62
- )
63
- else:
64
- yield ChatMessage(role="assistant", content=Output.output)