Spaces:
Sleeping
Sleeping
Dacho688
commited on
Commit
•
e89ef0e
1
Parent(s):
49099ea
App Updates
Browse files- improve base prompt
- include an example
- __pycache__/streaming.cpython-312.pyc +0 -0
- __pycache__/test_streaming.cpython-312.pyc +0 -0
- __pycache__/test_streaming.cpython-39.pyc +0 -0
- app.py +38 -20
- figures/classification_report.png +0 -0
- figures/confusion_matrix.png +0 -0
- figures/fare_sex_boxplot.png +0 -0
- requirements.txt +1 -1
- test_app.py +0 -134
- test_streaming.py +0 -64
__pycache__/streaming.cpython-312.pyc
ADDED
Binary file (3.43 kB). View file
|
|
__pycache__/test_streaming.cpython-312.pyc
ADDED
Binary file (3.43 kB). View file
|
|
__pycache__/test_streaming.cpython-39.pyc
ADDED
Binary file (2.1 kB). View file
|
|
app.py
CHANGED
@@ -16,7 +16,7 @@ llm_engine = HfEngine("meta-llama/Meta-Llama-3.1-70B-Instruct")
|
|
16 |
agent = ReactCodeAgent(
|
17 |
tools=[],
|
18 |
llm_engine=llm_engine,
|
19 |
-
additional_authorized_imports=["numpy", "pandas", "matplotlib", "seaborn","scipy"],
|
20 |
max_iterations=10,
|
21 |
)
|
22 |
|
@@ -24,13 +24,19 @@ base_prompt = """You are an expert full stack data analyst.
|
|
24 |
You are given a data file and the data structure below.
|
25 |
The data file is passed to you as the variable data_file, it is a pandas dataframe, you can use it directly.
|
26 |
DO NOT try to load data_file, it is already a dataframe pre-loaded in your python interpreter!
|
27 |
-
When plotting using matplotlib/seaborn save the figures to the (already existing) folder'./figures/': take care to clear
|
28 |
-
|
29 |
-
When
|
30 |
-
For example: from matplotlib import pyplot as plt
|
31 |
-
Not: import matplotlib.pyplot as plt
|
32 |
|
33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
Structure of the data:
|
36 |
{structure_notes}
|
@@ -39,7 +45,7 @@ Question/Problem:
|
|
39 |
"""
|
40 |
|
41 |
example_notes="""This data is about the Titanic wreck in 1912.
|
42 |
-
The target
|
43 |
pclass: A proxy for socio-economic status (SES)
|
44 |
1st = Upper
|
45 |
2nd = Middle
|
@@ -51,7 +57,9 @@ Spouse = husband, wife (mistresses and fiancés were ignored)
|
|
51 |
parch: The dataset defines family relations in this way...
|
52 |
Parent = mother, father
|
53 |
Child = daughter, son, stepdaughter, stepson
|
54 |
-
Some children travelled only with a nanny, therefore parch=0 for them.
|
|
|
|
|
55 |
|
56 |
def get_images_in_directory(directory):
|
57 |
image_extensions = {'.png', '.jpg', '.jpeg', '.gif', '.bmp', '.tiff'}
|
@@ -106,13 +114,22 @@ with gr.Blocks(
|
|
106 |
secondary_hue=gr.themes.colors.yellow,
|
107 |
)
|
108 |
) as demo:
|
109 |
-
gr.Markdown("""#
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
114 |
text_input = gr.Textbox(
|
115 |
-
label="Ask a question
|
116 |
)
|
117 |
submit = gr.Button("Run", variant="primary")
|
118 |
chatbot = gr.Chatbot(
|
@@ -123,11 +140,12 @@ Drop a `.csv` file below and ask a question about your data.
|
|
123 |
"https://em-content.zobj.net/source/twitter/53/robot-face_1f916.png",
|
124 |
),
|
125 |
)
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
|
|
131 |
|
132 |
submit.click(interact_with_agent, [file_input, text_input], [chatbot])
|
133 |
|
|
|
16 |
agent = ReactCodeAgent(
|
17 |
tools=[],
|
18 |
llm_engine=llm_engine,
|
19 |
+
additional_authorized_imports=["numpy", "pandas", "matplotlib", "seaborn","scipy","sklearn"],
|
20 |
max_iterations=10,
|
21 |
)
|
22 |
|
|
|
24 |
You are given a data file and the data structure below.
|
25 |
The data file is passed to you as the variable data_file, it is a pandas dataframe, you can use it directly.
|
26 |
DO NOT try to load data_file, it is already a dataframe pre-loaded in your python interpreter!
|
27 |
+
When plotting using matplotlib/seaborn save the figures to the (already existing) folder'./figures/': take care to clear
|
28 |
+
each figure with plt.clf() before doing another plot.
|
29 |
+
When plotting make the plots as pretty as possible given your tools. Same with tables, charts, or anything else.
|
|
|
|
|
30 |
|
31 |
+
In your final answer: summarize your findings and steps taken.
|
32 |
+
After each number derive real worlds insights, for instance: "Correlation between is_december and boredness is 1.3453, which suggest people are more bored in winter".
|
33 |
+
Your final answer should be a long string with at least 4 numbered and detailed parts:
|
34 |
+
1. Summary of Question/Problem
|
35 |
+
2. Summary of Actions
|
36 |
+
3. Summary of Findings
|
37 |
+
3. Potential Next Steps
|
38 |
+
|
39 |
+
Use the data file to answer the question or perform a task below.
|
40 |
|
41 |
Structure of the data:
|
42 |
{structure_notes}
|
|
|
45 |
"""
|
46 |
|
47 |
example_notes="""This data is about the Titanic wreck in 1912.
|
48 |
+
The target variable is the survival of passengers, noted by 'Survived'
|
49 |
pclass: A proxy for socio-economic status (SES)
|
50 |
1st = Upper
|
51 |
2nd = Middle
|
|
|
57 |
parch: The dataset defines family relations in this way...
|
58 |
Parent = mother, father
|
59 |
Child = daughter, son, stepdaughter, stepson
|
60 |
+
Some children travelled only with a nanny, therefore parch=0 for them.
|
61 |
+
|
62 |
+
Run a logistic regression."""
|
63 |
|
64 |
def get_images_in_directory(directory):
|
65 |
image_extensions = {'.png', '.jpg', '.jpeg', '.gif', '.bmp', '.tiff'}
|
|
|
114 |
secondary_hue=gr.themes.colors.yellow,
|
115 |
)
|
116 |
) as demo:
|
117 |
+
gr.Markdown("""# Data Analyst (ReAct Code Agent) 📊🤔
|
118 |
+
|
119 |
+
**Who am I?**
|
120 |
+
I'm your personal Data Analyst built on top of Llama-3.1-70B and the ReAct agent framework.
|
121 |
+
I break down your task step-by-step until I reach an answer/solution.
|
122 |
+
Along the way I share my thoughts, actions (Python code blobs), and observations.
|
123 |
+
I come packed with pandas, numpy, sklearn, matplotlib, seaborn, and more!
|
124 |
+
|
125 |
+
**Instructions**
|
126 |
+
1. Drop or upload a `.csv` file below.
|
127 |
+
2. Ask a question or give it a task.
|
128 |
+
3. **Watch Llama-3.1-70B think, act, and observe until final answer.
|
129 |
+
\n**For an example, click on the example at the bottom of page to auto populate.**""")
|
130 |
+
file_input = gr.File(label="Drop/upload a .csv file to analyze")
|
131 |
text_input = gr.Textbox(
|
132 |
+
label="Ask a question or give it a task."
|
133 |
)
|
134 |
submit = gr.Button("Run", variant="primary")
|
135 |
chatbot = gr.Chatbot(
|
|
|
140 |
"https://em-content.zobj.net/source/twitter/53/robot-face_1f916.png",
|
141 |
),
|
142 |
)
|
143 |
+
gr.Examples(
|
144 |
+
examples=[["./example/titanic.csv", example_notes]],
|
145 |
+
inputs=[file_input, text_input],
|
146 |
+
cache_examples=False,
|
147 |
+
label='Click anywhere below to try this example.'
|
148 |
+
)
|
149 |
|
150 |
submit.click(interact_with_agent, [file_input, text_input], [chatbot])
|
151 |
|
figures/classification_report.png
ADDED
figures/confusion_matrix.png
ADDED
figures/fare_sex_boxplot.png
DELETED
Binary file (9.84 kB)
|
|
requirements.txt
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
git+https://github.com/huggingface/transformers.git#egg=transformers[agents]
|
2 |
matplotlib
|
3 |
seaborn
|
4 |
-
|
5 |
scipy
|
|
|
1 |
git+https://github.com/huggingface/transformers.git#egg=transformers[agents]
|
2 |
matplotlib
|
3 |
seaborn
|
4 |
+
sklearn
|
5 |
scipy
|
test_app.py
DELETED
@@ -1,134 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import shutil
|
3 |
-
import gradio as gr
|
4 |
-
from transformers import ReactCodeAgent, HfEngine, Tool
|
5 |
-
import pandas as pd
|
6 |
-
|
7 |
-
from gradio import Chatbot
|
8 |
-
from test_streaming import stream_to_gradio
|
9 |
-
from huggingface_hub import login
|
10 |
-
from gradio.data_classes import FileData
|
11 |
-
|
12 |
-
#login(os.getenv("HUGGINGFACEHUB_API_TOKEN"))
|
13 |
-
|
14 |
-
llm_engine = HfEngine("meta-llama/Meta-Llama-3.1-70B-Instruct")
|
15 |
-
|
16 |
-
agent = ReactCodeAgent(
|
17 |
-
tools=[],
|
18 |
-
llm_engine=llm_engine,
|
19 |
-
additional_authorized_imports=["numpy", "pandas", "matplotlib", "seaborn","scipy"],
|
20 |
-
max_iterations=10,
|
21 |
-
)
|
22 |
-
base_prompt = """You are an expert full stack data analyst.
|
23 |
-
You are given a data file and the data structure below.
|
24 |
-
The data file is passed to you as the variable data_file, it is a pandas dataframe, you can use it directly.
|
25 |
-
DO NOT try to load data_file, it is already a dataframe pre-loaded in your python interpreter!
|
26 |
-
When plotting using matplotlib/seaborn save the figures to the (already existing) folder'./figures/': take care to clear each figure with plt.clf() before doing another plot.
|
27 |
-
When filtering pandas dataframe use the iloc.
|
28 |
-
When importing packages use this format: from package import module
|
29 |
-
For example: from matplotlib import pyplot as plt
|
30 |
-
Not: import matplotlib.pyplot as plt
|
31 |
-
|
32 |
-
Use the data file to answer the question or solve a problem given below.
|
33 |
-
|
34 |
-
Structure of the data:
|
35 |
-
{structure_notes}
|
36 |
-
|
37 |
-
Question/Problem:
|
38 |
-
"""
|
39 |
-
|
40 |
-
example_notes="""This data is about the Titanic wreck in 1912.
|
41 |
-
The target figure is the survival of passengers, notes by 'Survived'
|
42 |
-
pclass: A proxy for socio-economic status (SES)
|
43 |
-
1st = Upper
|
44 |
-
2nd = Middle
|
45 |
-
3rd = Lower
|
46 |
-
age: Age is fractional if less than 1. If the age is estimated, is it in the form of xx.5
|
47 |
-
sibsp: The dataset defines family relations in this way...
|
48 |
-
Sibling = brother, sister, stepbrother, stepsister
|
49 |
-
Spouse = husband, wife (mistresses and fiancés were ignored)
|
50 |
-
parch: The dataset defines family relations in this way...
|
51 |
-
Parent = mother, father
|
52 |
-
Child = daughter, son, stepdaughter, stepson
|
53 |
-
Some children travelled only with a nanny, therefore parch=0 for them."""
|
54 |
-
|
55 |
-
def get_images_in_directory(directory):
|
56 |
-
image_extensions = {'.png', '.jpg', '.jpeg', '.gif', '.bmp', '.tiff'}
|
57 |
-
|
58 |
-
image_files = []
|
59 |
-
for root, dirs, files in os.walk(directory):
|
60 |
-
for file in files:
|
61 |
-
if os.path.splitext(file)[1].lower() in image_extensions:
|
62 |
-
image_files.append(os.path.join(root, file))
|
63 |
-
return image_files
|
64 |
-
|
65 |
-
def interact_with_agent(file_input, additional_notes):
|
66 |
-
shutil.rmtree("./figures")
|
67 |
-
os.makedirs("./figures")
|
68 |
-
|
69 |
-
data_file = pd.read_csv(file_input)
|
70 |
-
data_structure_notes = f"""- Description (output of .describe()):
|
71 |
-
{data_file.describe()}
|
72 |
-
- Columns with dtypes:
|
73 |
-
{data_file.dtypes}"""
|
74 |
-
|
75 |
-
prompt = base_prompt.format(structure_notes=data_structure_notes)
|
76 |
-
|
77 |
-
if additional_notes and len(additional_notes) > 0:
|
78 |
-
prompt += additional_notes
|
79 |
-
|
80 |
-
messages = [gr.ChatMessage(role="user", content=additional_notes)]
|
81 |
-
yield messages + [
|
82 |
-
gr.ChatMessage(role="assistant", content="⏳ _Starting task..._")
|
83 |
-
]
|
84 |
-
|
85 |
-
plot_image_paths = {}
|
86 |
-
for msg in stream_to_gradio(agent, prompt, data_file=data_file):
|
87 |
-
messages.append(msg)
|
88 |
-
for image_path in get_images_in_directory("./figures"):
|
89 |
-
if image_path not in plot_image_paths:
|
90 |
-
image_message = gr.ChatMessage(
|
91 |
-
role="assistant",
|
92 |
-
content=FileData(path=image_path, mime_type="image/png"),
|
93 |
-
)
|
94 |
-
plot_image_paths[image_path] = True
|
95 |
-
messages.append(image_message)
|
96 |
-
yield messages + [
|
97 |
-
gr.ChatMessage(role="assistant", content="⏳ _Still processing..._")
|
98 |
-
]
|
99 |
-
yield messages
|
100 |
-
|
101 |
-
|
102 |
-
with gr.Blocks(
|
103 |
-
theme=gr.themes.Soft(
|
104 |
-
primary_hue=gr.themes.colors.blue,
|
105 |
-
secondary_hue=gr.themes.colors.yellow,
|
106 |
-
)
|
107 |
-
) as demo:
|
108 |
-
gr.Markdown("""# Llama-3.1 Data analyst 📊🤔
|
109 |
-
|
110 |
-
Drop a `.csv` file below and ask a question about your data.
|
111 |
-
**Llama-3.1-70B will analyze and answer.**""")
|
112 |
-
file_input = gr.File(label="Your file to analyze")
|
113 |
-
text_input = gr.Textbox(
|
114 |
-
label="Ask a question about your data?"
|
115 |
-
)
|
116 |
-
submit = gr.Button("Run", variant="primary")
|
117 |
-
chatbot = gr.Chatbot(
|
118 |
-
label="Data Analyst Agent",
|
119 |
-
type="messages",
|
120 |
-
avatar_images=(
|
121 |
-
None,
|
122 |
-
"https://em-content.zobj.net/source/twitter/53/robot-face_1f916.png",
|
123 |
-
),
|
124 |
-
)
|
125 |
-
# gr.Examples(
|
126 |
-
# examples=[["./example/titanic.csv", example_notes]],
|
127 |
-
# inputs=[file_input, text_input],
|
128 |
-
# cache_examples=False
|
129 |
-
# )
|
130 |
-
|
131 |
-
submit.click(interact_with_agent, [file_input, text_input], [chatbot])
|
132 |
-
|
133 |
-
if __name__ == "__main__":
|
134 |
-
demo.launch(server_port=7860)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
test_streaming.py
DELETED
@@ -1,64 +0,0 @@
|
|
1 |
-
from transformers.agents.agent_types import AgentAudio, AgentImage, AgentText, AgentType
|
2 |
-
from transformers.agents import ReactAgent
|
3 |
-
|
4 |
-
|
5 |
-
def pull_message(step_log: dict):
|
6 |
-
try:
|
7 |
-
from gradio import ChatMessage
|
8 |
-
except ImportError:
|
9 |
-
raise ImportError("Gradio should be installed in order to launch a gradio demo.")
|
10 |
-
|
11 |
-
if step_log.get("rationale"):
|
12 |
-
yield ChatMessage(role="assistant", content=step_log["rationale"])
|
13 |
-
if step_log.get("tool_call"):
|
14 |
-
used_code = step_log["tool_call"]["tool_name"] == "code interpreter"
|
15 |
-
content = step_log["tool_call"]["tool_arguments"]
|
16 |
-
if used_code:
|
17 |
-
content = f"```py\n{content}\n```"
|
18 |
-
yield ChatMessage(
|
19 |
-
role="assistant",
|
20 |
-
metadata={"title": f"🛠️ Used tool {step_log['tool_call']['tool_name']}"},
|
21 |
-
content=content,
|
22 |
-
)
|
23 |
-
if step_log.get("observation"):
|
24 |
-
yield ChatMessage(role="assistant", content=f"```\n{step_log['observation']}\n```")
|
25 |
-
if step_log.get("error"):
|
26 |
-
yield ChatMessage(
|
27 |
-
role="assistant",
|
28 |
-
content=str(step_log["error"]),
|
29 |
-
metadata={"title": "💥 Error"},
|
30 |
-
)
|
31 |
-
|
32 |
-
|
33 |
-
def stream_to_gradio(agent: ReactAgent, task: str, **kwargs):
|
34 |
-
"""Runs an agent with the given task and streams the messages from the agent as gradio ChatMessages."""
|
35 |
-
|
36 |
-
try:
|
37 |
-
from gradio import ChatMessage
|
38 |
-
except ImportError:
|
39 |
-
raise ImportError("Gradio should be installed in order to launch a gradio demo.")
|
40 |
-
|
41 |
-
class Output:
|
42 |
-
output: AgentType | str = None
|
43 |
-
|
44 |
-
for step_log in agent.run(task, stream=True, **kwargs):
|
45 |
-
if isinstance(step_log, dict):
|
46 |
-
for message in pull_message(step_log):
|
47 |
-
print("message", message)
|
48 |
-
yield message
|
49 |
-
|
50 |
-
Output.output = step_log
|
51 |
-
if isinstance(Output.output, AgentText):
|
52 |
-
yield ChatMessage(role="assistant", content=f"**Final answer:**\n```\n{Output.output.to_string()}\n```")
|
53 |
-
elif isinstance(Output.output, AgentImage):
|
54 |
-
yield ChatMessage(
|
55 |
-
role="assistant",
|
56 |
-
content={"path": Output.output.to_string(), "mime_type": "image/png"},
|
57 |
-
)
|
58 |
-
elif isinstance(Output.output, AgentAudio):
|
59 |
-
yield ChatMessage(
|
60 |
-
role="assistant",
|
61 |
-
content={"path": Output.output.to_string(), "mime_type": "audio/wav"},
|
62 |
-
)
|
63 |
-
else:
|
64 |
-
yield ChatMessage(role="assistant", content=Output.output)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|