import tqdm #import fastCNN import numpy as np import gradio as gr import os #os.system("sudo apt-get install nvIDia-cuda-toolkit") #os.system("/usr/local/bin/python -m pip install --upgrade pip") #os.system("pip install argparse") os.system("pip install opencv-python") #import pydensecrf.densecrf as dcrf from PIL import Image #import torch #import torch.nn.functional as F #from torchvision import transforms import numpy as np import collections import cv2 #import argparse device='cpu' def test(gpu_id, net, img_list, group_size, img_size): print('test') #device=device hl,wl=[_.shape[0] for _ in img_list],[_.shape[1] for _ in img_list] img_transform = transforms.Compose([transforms.Resize((img_size, img_size)), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])]) img_transform_gray = transforms.Compose([transforms.Resize((img_size, img_size)), transforms.ToTensor(), transforms.Normalize(mean=[0.449], std=[0.226])]) with torch.no_grad(): group_img=torch.rand(5,3,224,224) for i in range(5): group_img[i]=img_transform(Image.fromarray(img_list[i])) _,pred_mask=net(group_img*1) pred_mask=(pred_mask.detach().squeeze()*255)#.numpy().astype(np.uint8) #pred_mask=[F.interpolate(pred_mask[i].reshape(1,1,pred_mask[i].shape[-2],pred_mask[i].shape[-1]),size=(size,size),mode='bilinear').squeeze().numpy().astype(np.uint8) for i in range(5)] img_resize=[((group_img[i]-group_img[i].min())/(group_img[i].max()-group_img[i].min())*255).permute(1,2,0).contiguous().numpy().astype(np.uint8) for i in range(5)] pred_mask=[crf_refine(img_resize[i],pred_mask[i].numpy().astype(np.uint8)) for i in range(5)] #for i in range(5): # print(img_list[i].shape,pred_mask[i].shape) #pred_mask=[crf_refine(img_list[i],pred_mask[i]) for i in range(5)] print(pred_mask[0].shape) white=(torch.ones(2,pred_mask[0].shape[1],3)*255).long() result = [torch.cat([torch.from_numpy(img_resize[i]),white,torch.from_numpy(pred_mask[i]).unsqueeze(2).repeat(1,1,3)],dim=0).numpy() for i in range(5)] #w, h = 224,224#Image.open(image_list[i][j]).size #result = result.resize((w, h), Image.BILINEAR) #result.convert('L').save('0.png') print('done') return result #img_lst=[(torch.rand(352,352,3)*255).numpy().astype(np.uint8) for i in range(5)] outputpath1='img2.png' outputpath2='img2.png' outputpath3='img2.png' def sepia(opt,img1): #img_list=[img1,img2,img3,img4,img5] #h_list,w_list=[_.shape[0] for _ in img_list],[_.shape[1] for _ in img_list] #print(type(img1)) #print(img1.shape) #result_list=test(device,net,img_list,5,224) #result_list=[result_list[i].resize((w_list[i], h_list[i]), Image.BILINEAR) for i in range(5)] #img1,img2,img3,img4,img5=result_list#test('cpu',net,img_list,5,224) #white=(torch.ones(img1.shape[0],2,3)*255).numpy().astype(np.uint8) name='bike'+opt.replace(':','_')+'.png' output=cv2.imread('bike'+opt.replace(':','_')+'.png') output=cv2.resize(output,(output.shape[1]*256//output.shape[0],256)) return output[:,:,::-1]#np.concatenate([img1,white,img2,white,img3,white,img4,white,img5],axis=1) with gr.Blocks() as demo: gr.Markdown("image cropping") #with gr.Tab("Component test"): with gr.Row(): with gr.Column(): #slider1 = gr.Slider(2, 20, value=2, label="Count", info="Choose betwen 2 and 20") #drop1 = gr.Dropdown(["cat", "dog", "bird"], label="Animal", info="Will add more animals later!") #checklist1 = gr.CheckboxGroup(["4:3", "3:4", "16:9"], label="Shape", info="The shape of cropped image") radio2 = gr.Radio(["9:16", "3:4","1:1","4:3", "16:9","circle"], value="3:4",label="Shape", info="The shape of cropped image") #radio1 = gr.Radio(["park", "zoo", "road"], label="Location", info="Where did they go?") src_img1 = gr.Image() exp=gr.Examples(["bike.png","img2.png"],src_img1) bottom1 = gr.Button(label="cropping component") out1 = gr.Image()#gr.Textbox() bottom1.click(sepia, inputs=[radio2,src_img1], outputs=out1) #gr.Image(shape=(224, 2)) #demo = gr.Interface(sepia, inputs=["image","image","image","image","image"], outputs=["image","image","image","image","image"])#gr.Interface(sepia, gr.Image(shape=(200, 200)), "image") #demo = gr.Interface(sepia, inputs=["image"], outputs=["image"]) demo.launch(debug=True)