import imageio import numpy as np import spaces import torch from diffusers import UniPCMultistepScheduler, StableDiffusionControlNetPipeline from diffusers.utils import get_class_from_dynamic_module from tqdm import tqdm device = torch.device('cpu') dtype = torch.float32 if torch.cuda.is_available(): device = torch.device('cuda') dtype = torch.float16 NeuralTextureControlNetModel = get_class_from_dynamic_module( "dilightnet/model_helpers", "neuraltexture_controlnet.py", "NeuralTextureControlNetModel" ) controlnet = NeuralTextureControlNetModel.from_pretrained( "dilightnet/DiLightNet", torch_dtype=dtype, ) pipe = StableDiffusionControlNetPipeline.from_pretrained( "stabilityai/stable-diffusion-2-1", controlnet=controlnet, torch_dtype=dtype ).to(device) pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=True) @spaces.GPU def relighting_gen(masked_ref_img, mask, cond_path, frames, prompt, steps, seed, cfg): mask = mask[..., :1] / 255. for i in tqdm(range(frames)): source_image = masked_ref_img[..., :3] / 255. cond_diffuse = imageio.v3.imread(f'{cond_path}/hint{i:02d}_diffuse.png') / 255. if cond_diffuse.shape[-1] == 4: cond_diffuse = cond_diffuse[..., :3] * cond_diffuse[..., 3:] cond_ggx034 = imageio.v3.imread(f'{cond_path}/hint{i:02d}_ggx0.34.png') / 255. if cond_ggx034.shape[-1] == 4: cond_ggx034 = cond_ggx034[..., :3] * cond_ggx034[..., 3:] cond_ggx013 = imageio.v3.imread(f'{cond_path}/hint{i:02d}_ggx0.13.png') / 255. if cond_ggx013.shape[-1] == 4: cond_ggx013 = cond_ggx013[..., :3] * cond_ggx013[..., 3:] cond_ggx005 = imageio.v3.imread(f'{cond_path}/hint{i:02d}_ggx0.05.png') / 255. if cond_ggx005.shape[-1] == 4: cond_ggx005 = cond_ggx005[..., :3] * cond_ggx005[..., 3:] hint = np.concatenate([mask, source_image, cond_diffuse, cond_ggx005, cond_ggx013, cond_ggx034], axis=2).astype(np.float32)[None] hint = torch.from_numpy(hint).to(dtype).permute(0, 3, 1, 2).to(device) generator = torch.manual_seed(seed) image = pipe( prompt, num_inference_steps=steps, generator=generator, image=hint, num_images_per_prompt=1, guidance_scale=cfg, output_type='np', ).images[0] # [H, W, C] imageio.imwrite(f'{cond_path}/relighting{i:02d}.png', (image * 255).clip(0, 255).astype(np.uint8))