import yfinance as yf import plotly.graph_objects as go from plotly.subplots import make_subplots import pandas as pd import gradio as gr import os def fetch_data(ticker, period): data = yf.download(ticker, period=period) return data def compute_rsi(data, window=14): delta = data['Close'].diff() gain = (delta.where(delta > 0, 0)).rolling(window=window).mean() loss = (-delta.where(delta < 0, 0)).rolling(window=window).mean() rs = gain / loss rsi = 100 - (100 / (1 + rs)) return rsi def compute_macd(data, slow=26, fast=12, signal=9): exp1 = data['Close'].ewm(span=fast, adjust=False).mean() exp2 = data['Close'].ewm(span=slow, adjust=False).mean() macd = exp1 - exp2 signal_line = macd.ewm(span=signal, adjust=False).mean() histogram = macd - signal_line return macd, signal_line, histogram def buy_sell_signals(data, rsi, macd, signal_line): buy_signals = [] sell_signals = [] for i in range(2, len(data)): # RSI Buy Signal (RSI < 30) if rsi[i-1] < 30 and rsi[i] >= 30: buy_signals.append(data['Close'][i]) sell_signals.append(float('nan')) # RSI Sell Signal (RSI > 70) elif rsi[i-1] > 70 and rsi[i] <= 70: sell_signals.append(data['Close'][i]) buy_signals.append(float('nan')) # MACD Buy Signal (MACD crosses above Signal) elif macd[i-1] < signal_line[i-1] and macd[i] >= signal_line[i]: buy_signals.append(data['Close'][i]) sell_signals.append(float('nan')) # MACD Sell Signal (MACD crosses below Signal) elif macd[i-1] > signal_line[i-1] and macd[i] <= signal_line[i]: sell_signals.append(data['Close'][i]) buy_signals.append(float('nan')) else: buy_signals.append(float('nan')) sell_signals.append(float('nan')) return buy_signals, sell_signals def plot_with_gr_plot(data, buy_signals_rsi, sell_signals_rsi, buy_signals_macd, sell_signals_macd): fig = make_subplots(rows=2, cols=1, shared_xaxes=True) # Add the candlestick chart fig.add_trace(go.Candlestick(x=data.index, open=data['Open'], high=data['High'], low=data['Low'], close=data['Close'], name='Market Data'), row=1, col=1) fig.add_trace(go.Scatter(x=list(buy_signals_rsi.keys()), y=list(buy_signals_rsi.values()), mode='markers', marker_symbol='triangle-up', marker_color='green', name='Buy Signal RSI', text=["RSI Buy"]*len(buy_signals_rsi), hoverinfo='text+y'), row=1, col=1) fig.add_trace(go.Scatter(x=list(sell_signals_rsi.keys()), y=list(sell_signals_rsi.values()), mode='markers', marker_symbol='triangle-down', marker_color='red', name='Sell Signal RSI', text=["RSI Sell"]*len(sell_signals_rsi), hoverinfo='text+y'), row=1, col=1) fig.add_trace(go.Scatter(x=list(buy_signals_macd.keys()), y=list(buy_signals_macd.values()), mode='markers', marker=dict(symbol='triangle-up', color='blue', size=10), name='Buy Signal MACD', text=["MACD Buy"]*len(buy_signals_macd), hoverinfo='text+y'), row=1, col=1) fig.add_trace(go.Scatter(x=list(sell_signals_macd.keys()), y=list(sell_signals_macd.values()), mode='markers', marker=dict(symbol='triangle-down', color='purple', size=10), name='Sell Signal MACD', text=["MACD Sell"]*len(sell_signals_macd), hoverinfo='text+y'), row=1, col=1) # Update layout if needed fig.update_layout(title='Stock Analysis with RSI and MACD Signals') return fig def main_interface(ticker, period): data = fetch_data(ticker, period) rsi = compute_rsi(data) macd, signal_line, _ = compute_macd(data) buy_signals, sell_signals = buy_sell_signals(data, rsi, macd, signal_line) plot_filename = plot_data(data, buy_signals, sell_signals) return plot_filename # Step 7: Set Up Gradio Interface with corrected type parameter iface = gr.Interface(fn=main_interface, inputs=[gr.Textbox(label="Asset Ticker"), gr.Textbox(label="Period: (e.g., 1y, 2y, 5y)")], outputs=gr.Plot(), # Corrected type parameter title="Stock Analysis Tool", description="Enter a stock ticker and period to analyze buy/sell signals based on RSI and MACD.") iface.launch()