# -*- coding: utf-8 -*- """Emotion Recognition_Fine Tuning Automatically generated by Colab. Original file is located at https://colab.research.google.com/drive/1pZgt5n6943GB5oq_h43LjAYoA4yi-EST """ """Our Application""" import numpy as np import tensorflow as tf # Apply softmax using tf.nn.softmax # Load the fine-tuned model from the saved directory # Load model directly from transformers import AutoTokenizer, AutoModelForSequenceClassification loaded_model = AutoModelForSequenceClassification.from_pretrained("dhruvsaxena11/emoton_model_dhruv") # loaded_model = TFBertForSequenceClassification.from_pretrained("https://huggingface.co/spaces/dhruvsaxena11/Emotion_Recognition_in_Text/blob/main/tf_model.h5") loaded_tokenizer=AutoTokenizer.from_pretrained("google-bert/bert-base-uncased") def predict_emotion(text): text_token=loaded_tokenizer(text,padding=True,return_tensors="np") outputs=loaded_model(text_token) probabilities = tf.nn.softmax(outputs.logits) final=probabilities.numpy() labels=["sadness","joy","love","anger","fear","surprise"] final=final.tolist() result_dict = {k: v for k, v in zip(labels,final[0])} return result_dict predict_emotion("dhruv") my_labels=["sadness","joy","love","anger","fear","surprise"] import gradio as gr inputs = gr.Textbox(lines=1, label="Input Text") outputs = gr.Label(num_top_classes=6) interface = gr.Interface(fn=predict_emotion, inputs=inputs, outputs=outputs,title="Emotion Recognition in Text - NLP") interface.launch()