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ABSTRACT Word sense disambiguation (WSD) is a task of determining a reasonable sense of a word in a
particular context. Although recent studies have demonstrated some progress in the advancement of neural
language models, the scope of research is still such that the senses of several words can only be determined
in a few domains. Therefore, it is necessary to move toward developing a highly scalable process that can
address a lot of senses occurring in various domains. This paper introduces a new large WSD dataset that
is automatically constructed from the Oxford Dictionary, which is widely used as a standard source for the
meaning of words. We propose a new WSD model that individually determines the sense of the word in
accordance with its part of speech in the context. In addition, we introduce a hybrid sense prediction method
that separately classifies the less frequently used senses for achieving a reasonable performance. We have
conducted comparative experiments to demonstrate that the proposedmethod is more reliable compared with
the baseline approaches. Also, we investigated the adaptation of the method to a realistic environment with
the use of news articles.

INDEX TERMS Computational and artificial intelligence, English vocabulary learning, natural language
processing, neural networks, word sense disambiguation.

I. INTRODUCTION
Natural language understanding refers to a series of pro-
cesses in which a computer reads a text written in human
language, analyzes it, and facilitates the reasoning to generate
new information [31]. Textual analysis can be divided into
a syntactic and a semantic method. A syntactic approach
addresses issues such as determining the part of speech in
a sentence [18], [21], [22], [42] or identifying the structural
relationship of words [6], [9], [17], [40]. These studies have
shown considerable promise along with the development
of various deep learning models [1], [23], [46]. However,
semantic analysis is still challenging at even the most basic
level, that of a single word.

In the field of natural language processing, WSD refers
to a task that determines a reasonable sense of a word that
can have multiple meanings or seems to be ambiguous in
a given context. This research still requires more progress,
except when the senses of the words can be uniquely deter-
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mined by the structural features of the sentence. In particular,
to commercialize the results of WSD, it will be necessary
to address most words and their senses in a wide range of
domains; these will range from information retrieval [41],
[45], [49] or machine translation [4], [14], [30], [37] to
even second language education [7], [50], using various
sources such as movies and books.

A dictionary is a very resource that can meet all these
needs. The dictionary lists all the senses, their parts of speech,
and example sentences for each word that might be used in
the real world. Users routinely depend on the dictionary to
provide reliable information on the senses of words. However,
the senses of the words are very variable, ranging from those
that are often encountered in real life to those used only
in specific domains such as medicine, natural science, and
philosophy.

In this paper, we introduce a new large-scale WSD dataset
that is automatically constructed from a widely used and
highly reliable source, the Oxford Dictionary. The dataset
consists of a set of words and all of the senses described in
the dictionary, along with the words’ parts of speech uses,
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and each sense is described in detail and demonstrated with a
few example sentences. The key advantage of this data set
is that no data construction costs are incurred because the
Oxford Dictionary is a publicly accessed resource. In addi-
tion, even though the dataset was built automatically, the qual-
ity of the data is guaranteed because the dictionary has been
created and reviewed by language experts. Lastly, the data
used in the existing WSD studies selectively contain only
some of the meanings of words, but the current dataset
includes all the known meanings of words. Hence, it can
be used in various manners irrespective of the domain.
Herein we focus on the WSD model for processing this
dictionary-based WSD data set.

In trying to understand the sense of a word, the reader
makes an appropriate selection based on prior knowledge
of the word and the current context. Let’s turn this into a
machine learning problem. First, we define a ‘‘target word’’
as the word for which we want to determine the sense. The
semantic decision-making process for a target word involves
choosing one sense from among all the senses in the dic-
tionary. The requirement for classification is the contextual
information for the word in the sentence.

To address this problem, [16], [39], [48] proposed models
for classifying word senses based on traditional machine
learning algorithms. These studies define the context infor-
mation of a target word as the word’s part of speech and its
surrounding information. This contextual information is then
used to develop independent sense classifiers for each word.
This approach still shows results competitive with those in
other WSD studies but has a scalability problem because a
newWSD classifier must be created whenever the number of
words in the WSD dataset increases.

On the other hand, the system proposed by [24] assigns
the sense of the target word to the one having the most similar
context information in the training data by using theK-nearest
neighbor algorithm [44]. This study uses the bi-directional
LSTM language model to represent the context information
of a target word. Following this work, studies by [10], [34]
adopted the use of contextual information obtained from the
latest neural language models. The performance of such neu-
ral language model-based approaches depends on the accu-
racy with which the contextual information of the target word
is represented. The premise for training the neural language
models to use different contextual information depending on
the sense of words is that the number of example sentences for
the sense is sufficient and their distribution is even [13], [38].
In this respect, the datasets used in existing WSD studies
satisfy this premise [35]; however, this can be improved in
our dataset. Some senses do not contain enough example
sentences to train the latest high-capacity neural language
models. In addition, while frequently used senses often have
a relatively large number of example sentences, there may be
very few examples for rarely encountered senses. Because of
this balance problem, our dictionary-based dataset makes it
difficult for the neural language models to learn the accurate
contextual information involving rare senses.

Therefore, in this paper we propose a new WSD model
that addresses the greater ambiguity regarding the senses of
some words and, at the same time, exhibits greater predic-
tion accuracy for rare senses. The model selects one of the
possible senses for the part of speech of the target word
in the example sentence. This comes from the format of
the Oxford Dictionary, in which all of the senses for each
word are recorded and divided according to their parts of
speech assignments. This method works well for words with
many senses because it reduces the range of sense selection.
It also enables neural language models to produce different
contextual information for the target word in accordance
with its part of speech. In addition, we also propose hybrid
sense prediction in which rare senses of a word are classified
separately from other, frequently encountered, senses. This
has the effect of increasing the prediction accuracy, even if
the contextual information for the senses with relatively small
numbers of example sentences is somewhat ambiguous.

The remainder of this paper is organized as follows;
Section II briefly describes previous studies for WSD,
Section III introduces a new large-scale WSD dataset
constructed automatically from the Oxford Dictionary,
Section IV introduces our proposed WSD model, and
Section V discusses our experimental setup and analyzes our
results. Finally, we draw conclusions in Section VI.

II. RELATED WORK
Studies on WSD aim to determine the accurate sense of a
word in a given context. A line of research like this one
can be typically divided into two approaches and may be
either supervised or knowledge based. On the one hand,
a supervised approach [8], [16], [24], [47] generally makes
use of an effective set of features that categorizes senses and
creates a classification model that learns the set. To guaran-
tee robust performance, a human-annotated corpus with the
labeling of accurate senses of ambiguous words is needed.
This prerequisite presents a crucial issue—not only is the
construction of such a data set expensive, but it is almost
impossible to construct a data set that embraces every sense
of every word. Hence, performance is largely dependent
on data quality. On the other hand, a knowledge-based
approach [3], [5], [19], [28], [32] makes use of an external
lexical knowledge base, such as such as1 WordNet [26] or2

BabelNet [29], to obtain the sense of an ambiguous word
corresponding to its context. The resources generally include
sets of words with lexical synonyms grouped into a set,
and each set is linked in accordance with the lexical and
semantic connections. Thus, when determining the sense
of an ambiguous word, the WSD system searches external
resources for the sense that suits the context of the word and,
thereby disambiguates the word. The major advantage is that
these approaches need not depend on human-annotated data
in manually curated knowledge resources. However, these

1https://wordnet.princeton.edu/
2http://babelnet.org
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knowledge-based approaches have not yet been shown to
outperform the supervised approaches.

Our work belongs to the class of supervised learning
approaches. Previous studies are strongly dependent on the
ability to properly express the semantic information of
words in context [24], [34], [36]. In the past, a word was
mapped to its corresponding vector with 1:1 correspondence
using a fixed word representation such as Word2Vec [25],
GloVe [33], or FastText [2]. For example, in the sentence
‘‘I just dropped by the bank to withdraw money,’’ the word
‘‘bank’’ itself has multiple meanings such as (1) an orga-
nization for financial services and (2) the side of a river
or canal. In this case, the fixed word representation always
expresses the same embedding of the word ‘‘bank’’ regard-
less of whether its meaning belongs to (1) or (2). In other
words, this method always produces vectors that are equally
represented, even if they have different meanings in context.
Therefore, it is unreasonable to consider the fixed word rep-
resentation of the ambiguous word in a sentence as contextual
information.

Recently, contextualized word embeddings based on a
neural language model [10], [24], [34] have been proposed
for distinguishably expressing words with different meanings
according to contexts, as in the above sentence and mean-
ings (1) and (2). Contextualized word embeddings have been
shown to have a significantly positive impact on WSD. [24]
have reported important results for a supervised WSD
task by using a bi-directional Long Short-Term Memory
(BiLSTM) to obtain the contextual information of the target
word from the embeddings of the variable-length sentential
context around the word. Since then, the latest language
models that generate more sophisticated contextualized word
embeddings, such as ELMo [34] and BERT [24], have per-
formed successfully in supervised WSD tasks. These models
use the k-nearest neighbor algorithm to assign the sense of
the target word to the one having the most consistent context
information in the training data. Therefore, the success of
these approaches depends significantly on the performance
of the neural language models. These approaches may be
appropriate for the datasets used in the existing studies, where
the number of example sentences provided for each sense
of the word is sufficient and the distribution among various
senses is quite uniform [35]; however, it is problematic to
apply a related approach to our dataset, in which some senses
do not contain enough example sentences to train the latest
high-capacity neural languagemodels.Worse, our dataset has
different numbers of example sentences for various senses,
depending on their frequency of use in the real environ-
ment; hence, the neural language model will encounter dif-
ficulty in learning disparate contextual information for rare
senses. Therefore, we propose a WSD model that assim-
ilates large amounts of versatile data. In order to address
words with many meanings, the model predicts a sense from
among those belonging to the target word’s part of speech
in the example sentence. In addition, the model contains a
hybrid sense prediction method and rare senses of a word

are classified separately from other, frequently encountered
senses.

III. OXFORD DATASET FOR WORD SENSE
DISAMBIGUATION
This section introduces a new large data set for WSD that is
automatically collected from the publicly accessed3 Oxford
Dictionary. Its primary purpose is to learn a versatile WSD
model that can address a wide range of topics, from real-life
conversations to machine translation, second language edu-
cation, medical information retrieval, and more. The key
function of a dictionary is to contain all the senses that each
word can have in the real world, and they are described in
detail and associated with their part of speech tags, lemmas,
and example sentences. Also, these content sets are built and
reviewed by qualified linguistic experts. Therefore, people
generally adopt the dictionary as a standardized resource for
determining the meaning of a word.

In this regard, the advantages of utilizing a certified pub-
licly accessed dictionary are as follows; first, no data con-
struction costs are incurred because the dictionary is an open
resource. Next, since this dataset contains all the meanings
of words in the dictionary, it contains a larger number of
senses than do the datasets used in previous studies. Finally,
the dataset is sufficiently versatile that it may be used in any
domain due to the broad coverage of meanings.

We use a multi-step process to construct our WSD cor-
pus. The Oxford Dictionary contains part of speech, sense
ID, sense definition, and example sentences for each word.
We first collect words from the dictionary until we have a
million example sentences. For even more effective learning,
the collection can be preprocessed using the following rules:
• Remove all the example sentences for thewordwith only
one sense ID.

• Remove all the example sentences for the senses not
belonging to the list of the predefined part of speech tags.

• For each part of speech tag for a word, the maximum
number of senses is limited to 20 and the rest are deleted.

• Remove all the example sentences with more than
50 words or less than 5 words.

In this study, we set up a list of predefined parts of speech
tags with nouns, verbs, adjectives, and adverbs for direct
comparison with the existing WSD corpus.

Now, we construct the dataset to consist of an example
sentence, lemma, part of speech, sense ID, and the position
of the target word. We additionally provide a list of parts
of speech for the example sentence for use in future work,
because a part of speech definition of a word can be still one
of the most important features for WSD. To analyze the part
of speech tags of the sentence, we adopt4 Google Cloud NLP.
Examples of our dataset are shown in Figure 1. The first

line contains the lemma of the target word, part of speech
(referred to in the Oxford Dictionary), sense ID, and word

3https://developer.oxforddictionaries.com/
4https://cloud.google.com/natural-language/
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TABLE 1. Statistics of the Oxford dataset for WSD.

FIGURE 1. Examples of our Oxford dataset.

position in the sentence from the left. The second line is the
sequence of whole words in the sentence, and the third line
is the part of speech tags for each word analyzed by Google
Cloud NLP.

Table 1 shows the statistics of our Oxford data set
compared with others used in previous studies. Two sense-
annotated corpora, SemCor [27] and One Million Sense-
Tagged Instances (OMSTI) [43], have been widely used in
the previous supervised WSD studies. SemCor is the largest
human-annotated corpus for WSD and sense annotation
comes from the WordNet 1.4 sense inventory. OMSTI is also
a large WSD corpus in which every sense is automatically
annotated based on the WordNet 3.0 inventory by using an
alignment-based WSD approach on a large Chinese-English
parallel corpus. Though it can be noisy due to its auto-
matic nature, it has already proven its utility as an additional
resource. The major difference of our Oxford data set is that
the number of unique senses is the largest of all. In particular,
the sense range is almost twice that of SemCor, and signifi-
cantly larger than that of OMSTI. In addition, we define the
ambiguity level as the ratio of the total number of candidate
senses to the number of sense annotations, as suggested
by [35]. The ambiguity level of our data set is the highest
of all, which means that the sense prediction is much more
difficult than it is with any other dataset. Additionally, our
dataset contains several sentences and is, notably, 25 times
larger than that in SemCor.

However, though the corpus has many words with a wide
range of sense coverage, it is difficult to use it to train neural
language models that can express different contextual infor-
mation depending on the sense of the word in the context.
This stems from the nature of a source (the Dictionary) that
does not contain enough example sentences for each sense to
train neural language models. Particularly for senses that are
less frequently used, the number tends to be extremely low.
This differs from other existing datasets, in which the distri-
bution of example sentences for each sense is quite balanced.
In the next section, we introduce a novel way of effectively

classifying a large number of senses by obtaining distinguish-
able contextual features from a neural language model while
maintaining the advantage of a dictionary dataset.

IV. PROPOSED MODEL FOR WORD SENSE
DISAMBIGUATION
In this section, we propose a new WSD model that can
effectively address large amounts of versatile WSD data
automatically constructed from the Oxford Dictionary. The
Dictionary defines all the senses that each word can have
in the real world, so each word has a higher level of sense
ambiguity than do other datasets. Moreover, the dictionary
has every sense of the word classified according to its parts
of speech. Given this characteristic, we propose a model that
individually predicts the sense of the word according to its
part of speech in a context, as can be shown in Figure 2.
It facilitates the processing of words with high ambiguity.
Additionally, we introduce a hybrid sense prediction that
separately predicts less frequently used senses for better pre-
diction accuracy. For each sense of a word, the number of
example sentences varies according to its frequency of use in
the real environment. As a result, it is difficult for a neural lan-
guage model to produce distinct contextual information for
those senses. Given an example sentence, the model predicts
the sense of the target word using the following three steps:
(1) it first produces a contextual embedding that represents
the contextual information for the target word using a bi-
directional LSTM, (2) it uses a switching mechanism to pro-
vide a context feature dependent on the part of speech of the
target word in the example sentence, and (3) it executes the
hybrid sense prediction by calculating the likelihood of rare
senses separately when the preceding prediction indicates
that the sense belongs to <Rare>, which is a symbol for ‘‘a
rare sense.’’ In the following section we describe the LSTM,
which is the basic element of the neural language model in
this paper. Section IV.B explains the method of producing
contextual information, Section IV.C introduces the method
of generating a context based on the part of speech assign-
ment, and Section IV.D describes the hybrid sense prediction
method in detail.

A. LONG SHORT TERM MEMORY
A recurrent neural network (RNN) model is an effective
deep neural network that predicts a time sequence.
However, the longer the sequence, the higher is the chance of
encountering vanishing and exploding gradients; this makes
accurate prediction difficult. To solve this issue, a LSTM
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FIGURE 2. Proposed model.

model is presented as a variant structure of RNNs. The LSTM
consists of a memory cell to save data, an input gate to
receive data, an output gate to export data, and a forget gate
to delete data [12], [15]. The structure of LSTM is shown in
formulas (1) to (6).

it = σ (Wixxt +Wihht−1), (1)

ot = σ (Woxxt +Wohht−1), (2)

ft = σ (Wfxxt +Wfhht−1), (3)

c′t = tanh(Wcxxt +Wchht−1), (4)

ct = xt � ct−1 + it � c′t , (5)

ht = ot � ct (6)

where it , ot , ft , and ct denote the input gate, the output
gate, the forget gate, and the memory cell, respectively.

Thememory cell is updated by each gate. Finally, each LSTM
cell exports ht , i.e., the hidden layer, via the output gate.

B. CONTEXT EMBEDDING
In order to obtain the contextual information for the target
word in the example sentence, we introduce a context embed-
ding (

−−→
CEk ) that combines the outputs of the Bi-directional

LSTM with pre-trained word embedding for the target word.
A target word (WK ) is first represented as a word

embedding (
−−→
WEk ) by a pre-trained word embedding model.

We particularly exploit the GloVe that can be obtained
from unsupervised learning via co-occurrence statistics com-
paring words in a corpus [33]. The GloVe model in this
paper was pre-trained with Wikipedia 2014 and Gigaword 5.
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Then, contextual information for the target word can be
obtained from the output of BiLSTM. Given a sequence of
M words (W1,W2, . . . ,WM ), a forward LSTM aggregates all
the contextual information from the start (<SOS>) to the Kth
step which corresponds to the target word and generates the
output vector (

−−→
FEk ) from the last output. Similarly, a back-

ward LSTM executes the same process except it works from
the end (<EOS>) to the target, and it generates the output
vector (

−−→
BEk ). Next, all three vectors are concatenated into

one (
−→
Ok ) to generate the final context embedding vector.

−→
Ok = [

−−→
FEk ;

−−→
WEk ;

−−→
BEk ] (7)

Finally, a feed forward network is used to produce the
context embedding (

−−→
CEk ) from the concatenated vector (

−→
Ok ):

−−→
CEk = FFN (

−→
Ok ) (8)

FFN (x) = ReLU (L1(x)) (9)

where FFN stands for Feed Forward Neural Network, ReLU
is the Rectified Linear Unit [11], and L1(x) = W1x + b1.
We set as 300 the dimensionality of the word embedding,
the hidden units of the BiLSTM, and the hidden size of
FFN. Consequently, the final context embedding (

−−→
CEk ) of

the target word can be interpreted as a contextual meaning
representation for the entire input sentence.

C. PART OF SPEECH BASED CONTEXT FEATURE
In order to address effectively words with high sense ambi-
guity, we add an additional layer to obtain a context feature
dependent on the part of speech of the target word. It enables
the user to predict the sense of the word according to its
part of speech in a context. This layer contains independent
feed forward networks (FFN i) along with the parts of speech
designations for the word. We employ a switch to activate
a certain network determined by the part of speech in the
input sentence. We adopt the part of speech of the target
word in the sentence from the Dictionary. If the part of
speech of the target word is a verb, as shown in Figure 2,
the feed forward network connected to the second switch is
then activated. Now, each network in this layer uses as input
context embedding created in the previous step to generate a
part of speech context feature (

−→
F ) to predict the sense:

−→
Fi = FFN i(

−−→
CEk ),

i ∈ {Noun,Verb,Adjective,Adverb} (10)

FFN i(x) = ReLU (L2i(x)) (11)

where FFN stands for Feed Forward Neural Network, ReLU
is the Rectified Linear Unit, and L2i(x) = W2ix + b2i.
We set the hidden size for each feed forward network as the
maximum number of meanings a word has for a certain part
of speech in the training set.

D. HYBRID SENSE PREDICTION
To alleviate the problem that the neural language model is
unable to generate distinct contextual information for rare

senses which contain a relatively small number of example
sentences, we introduce a hybrid sense prediction method
that predicts the rare senses separately. This method orig-
inally comes from the field of neural machine translation.
A hybrid neural machine translation model proposed by [20]
has been shown to improve the translation for low frequency
or unknown words in the training data, which are usually
symbolized as <UNK>. In the field of machine translation,
there is an ongoing debate over how to determine a certain
word identified as an<UNK> word in a decoding step. This
stems from the difficulty in training a neural network on the
syntactic and semantic alignment for the less frequently seen
words or those that do not exist in the training data.
Motivated by this approach, our hybrid sense prediction

proceeds in two phases. The first phrase ismajor sense predic-
tion, which determines whether the sense of the target word
is rare or not using the part of speech context feature (EF).
More specifically, this step predicts whether the word’s sense
belongs to one of the top K senses with high frequency, or to
the group of rare senses symbolized as <RARE> in Fig. 2.
We set a feed forward neural network (FFNMajor ), and the
context feature (

−→
F ) is given as an input. The likelihood of

sense categories including<RARE> is calculated as follows:
−→
MS = FFNMajor (

−→
F ) (12)

FFNMajor (x) = Softmax(ReLU (L3i (x))) (13)

where ReLU is the Rectified Linear Unit and L3i(x) =
W3ix+b3i. We set the hidden size of the feed forward network
as K+1, where K is the number of senses that are frequently
used. We set its value as 4, which is determined experimen-
tally. If the maximum likelihood belongs to one of the senses
other than<RARE>, then that sense is assigned as the sense
of the target word. Otherwise, it belongs to<RARE> and the
model then goes on to the second phase.
The second phase involves rare sense prediction. If the

maximum likelihood of senses in the first phase lies in the
<RARE> category, sense prediction is performed in the fol-
lowing additional neural network. We add a feed forward
network (FFNRare) that is totally independent of the one
used in the first step solely for identifying rare senses. The
likelihood of rare sense categories is calculated as follows:

−→
RS = FFNRare(

−→
F ) (14)

FFNRare(x) = Softmax(ReLU (L4i (x))) (15)

where L4i(x) = W4ix + b4i. We set the hidden size of the
feed forward network as the number of rare senses. The
sense would then be assigned to the one with the maximum
likelihood. In order to train the overall network, we set our
objective function as follows:

J = JMajor + αJRare (16)

where JMajor and JRare represent the loss of the major sense
prediction and the rare sense prediction, respectively. In this
study, each loss function is the cross-entropy, and alpha is set
to 1.
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V. EXPERIMENT
This section consists of two parts. Section V.A describes the
dataset and training details used in the experimental setup.
We show the performance of our proposed model and inves-
tigate the results in Section V.B.

A. EXPERIMENTAL SETUP
We developed our new dataset for WSD from the publicly
available Oxford Dictionary, as mentioned in Section 3.
The dataset consists of 765,145 sentences, each of which
contains an ambiguous word annotated with its sense and
part of speech. The training, validation, and test sets consist
of 624,281, 70,864, and 70,000 sentences, respectively.

We also built another test set, called News Test, to verify
the performance of the proposed model in a more realistic
environment.We collected 3,072 news articles from TheWall
Street Journal, selected random vocabulary, and personally
tagged relevant sense IDs.

The hyperparameters used in the proposed model are
shown in Table 2. We trained our model until the accuracy of
the validation set does not improve for 5-epochs. In addition,
we adopted the baseline as the context2vec and its hyper
parameter is set to match that in the newspaper.

TABLE 2. Hyperparameters.

B. EXPERIMENTAL RESULT
In this section, we have investigated that our proposed
model can effectively address many words with a wide range
of sense coverage compared with other existing studies.
We adopted the following two approaches as baselines. One
(First Sense Only, FSO) is to immediately determine the first
sense of the target word as listed in the dictionary. This is sim-
ilar to the Most Frequent Sense method, which has also been
used as the baseline in the existing supervised WSD studies.
In such manner, the sense of the target word is basically
assigned to the one with the highest frequency in the corpus.
In the dictionary, each word contains all the possible senses,
listed in the order in which they are frequently used in real
life. In addition, the number of example sentences describing
the meaning also depends largely on the order in which they
are listed. The other baseline approach (C2V+k-NN) is a
neural language model called context2vec that represents

context embeddings describing the contextual information of
the word in the context. It adopts the bidirectional LSTM
to obtain the contextual embedding for the target word and
assign the sense most similar to the context information of the
target word in the training data using the k-nearest neighbor
algorithm. Therefore, its performance has been shown quite
dependent on that of the neural language model.

Table 3 demonstrates that our proposed system out-
performed the two comparison models over our Oxford
Dictionary based WSD dataset. It implies that the way of
individually predicting meanings according to the parts of
speech of words has shown its feasibility on data with high
levels of sense ambiguity. Obviously seen from the compar-
ison with the FSO method, the semantic analysis of words
in the context is much more accurate on WSD than the
simply matching method. In addition, our proposed model
has shown 3.7% higher accuracy than that of the context2vec
which determines the senses of the words solely based on the
similarities of contextual embeddings. Since both approaches
are given a similar way of obtaining contextual embeddings of
the target word from the bi-directional LSTM, it is reasonable
to highlight that the performance difference stems from our
part-of-speech based sense classification method.

TABLE 3. Model performance for the Oxford dataset.

Next, we also conducted an ablation study to verify our
hybrid sense classification method. Through various exper-
iments, we obtained the optimal performance as shown
in Table 3 when we set the number of frequently used mean-
ings to 4. By adding the hybrid method, it has the effect
of increasing accuracy by approximately 1.7%. We further
analyzed the accuracy of the evaluation data by dividing
them in the order of pre-listing for each meaning, as shown
in Figure 3. The X axis refers to the order of the sense
listing with the number of the example sentences. The Y axis
represents the accuracy. As shown in the graph, the number
of the example sentences of the senses varies considerably
according to the order of senses in the dictionary. This distri-
bution is also the same as the training set. Therefore, although
the overall tendency of accuracy decreases with respect to the
order of senses in the dictionary, it can be seen that the hybrid
prediction method contributes to the improvement of classi-
fication accuracy. In particular, the improved accuracy of the
rare senses is more pronounced. Since there is a significant
variation in the number of the example sentences for each
sense, the context feature still contains errors from the neural
language model. Nonetheless, the result can be compensated
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FIGURE 3. Effects of hybrid sense classification.

TABLE 4. Examples with positive results.

FIGURE 4. Accuracy of news article.

by separately predicting rare senses. Therefore, the hybrid
sense classification method plays a role in supplementing the
performance for less-frequently used senses.

Furthermore, we conducted another experiment to inves-
tigate the performance of the proposed model over a more
realistic environment. As seen in Figure 4, First Sense denotes

the output of the very first sense ID that appears in the
Oxford Dictionary, andDeep Model is the output of the sense
ID in accordance with the approach proposed in this study.
The y-axis refers to accuracy and x-axis to the number of
learning iterations. First Sense in the News Test showed an
accuracy of 79.36%. The number was relatively higher as the
usage frequency in real life is implemented less in the dic-
tionary. Although the suggested model achieved an accuracy
of 94.33% after seven learning iterations, the performance
deteriorated as the number of iterations increased. This issue
is due to different sentence patterns and portions of sense
ID in the Oxford Test and News Test. Hence, with more
learning iterations, the model parameters are over-fit to the
Oxford Training corpus, causing performance degradation in
the case of news. Therefore, adequate tuning is necessary to
implement a WSD model.

We conducted exhaustive analysis on our experiment
results. Table 4 demonstrates how the suggested model offers
an accurate sense analysis of the target word in a random
sentence. To sum, the proposed model can be an effective
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solution to the second language students or translators when
recognizing the accurate sense of the word in the context.

VI. CONCLUSION
This paper proposed a novel architecture for WSD capable
of addressing a versatile large-scale dataset. To show its
capacity, we introduced a new dataset forWSD that was auto-
matically constructed from the certified and highly reliable
Oxford Dictionary. Because the dictionary contains several
words with a wide range of domains and all the known senses,
it is normally considered to be one of the standard sources
for sense identification. Though existing studies have shown
considerable success, there still remains a threshold because
they only cover a limited number of domains due to the
limited nature of the training data. In contrast, our proposed
model can address texts with a wide range of domains, which
expands its capacity and enables success in various applica-
tions such as second language education, medicine, andmore.

In the future, we will extend our work to incorporate mul-
timodal data such as images or audios. This should ultimately
allow us to extend the capacity of our model to utilize content
with various formats.
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